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Quantum computing concepts are described using geometric algebra, without using complex 
numbers or matrices. This novel approach was developed in the first author’s Ph.D. dissertation 
in Electrical Engineering at University of Texas at Dallas (May 2002) and enables the expression 
of the principle ideas of quantum computation without requiring an advanced degree in 
mathematics or physics. Using a topologically derived algebraic notation that relies only on 
addition and the anticommutative geometric product, this paper describes the following quantum 
computing concepts: bits, vectors, states, orthogonality, qubits, classical states, superposition 
states, spinor, reversibility, unitary operator, singular, entanglement, ebits, separability, 
information erasure, destructive interference and measurement. These central quantum concepts 
can be described simply in geometric algebra, thereby facilitating the understanding of quantum 
computing concepts by non-physicists and non-mathematicians.  
 
Keywords: Geometric algebra, qubits, ebits, spinors, quantum operators, sparse invariant states, 
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Communicated by:   

 
1. Introduction 
 
Quantum computing has received significant attention since the announcement of Shor’s 
algorithm [1], which demonstrates that quantum computers can solve some extremely 
computationally intensive problems more efficiently than any classical algorithm. 
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2 Quantum Computing Made Easy 

Unfortunately, hardware and software engineering for quantum computers requires different 
sets of skills from either research on the physics of quantum computing or hardware/software 
engineering for traditional computers. The goal of this paper is to lay a foundation for 
hardware/software design for quantum computers that is accessible to traditional engineers 
and computer scientists. 
 
For newcomers to quantum computing the learning curve is steep for two primary reasons. 
First, quantum computing is based on the principles of quantum physics and is typically 
expressed mathematically using complex Hilbert space, which is a high-dimensional, 
complete, vector space, using complex numbers and matrices. The matrix notation is concise 
and compact, but also opaque to non-mathematicians. Second, quantum computation has 
many new information concepts that do not naturally arise in classical computing and are 
therefore unintuitive to traditionally trained engineers and programmers. The difficulty of 
understanding these new concepts is compounded by the use of Dirac’s “bra-ket” notation [2], 
since the reader must first comprehend the foreign-looking mathematical notation. This article 
takes the approach of focusing on quantum computing concepts while relying on the 
notationally simpler geometric algebra [3,4], which uses neither explicit complex numbers 
nor matrices.  
 
This article is targeted at engineers and programmers with a basic understanding of computer 
science and mathematics who are interested in learning about quantum computing. From this 
perspective, quantum computing is nothing more than an information system with very 
particular “bit” properties and the approach of this relatively short article is to show the 
design of a mathematically oriented process structure that naturally represents and models 
these properties. The key bit and quantum-properties and their relatively simple mathematical 
representation using geometrical algebra will be introduced when required and only as 
needed. Bits form the building blocks of the computing industry and computer professionals 
have very strong intuitions about them, so this article begins with that perspective. 
 
2. Bits Represented as Vectors 
 
A bit expresses a binary distinction, the smallest unit of information, and is physically the 
space reserved (or bit capacity in a disk, memory, register, or communications channel) for a 
single binary state value. The typical choice is to use the implementation-specific values 0/1 
to symbolically represent mutually exclusive state pairs such as False/True, dark/light, or 
male/female. Each binary-valued bit is usually given a symbolic name such as a or b to 
facilitate describing how multiple bit-states causally interact (i.e. c = NOT a, d = a AND b, 
using the Boolean algebra conventions with the standard logical operators NOT, AND, OR, 
etc). A classical bit can only have two possible complementary states and most importantly, 
these states are required to be mutually exclusive. For example, if states a = True and NOT a 
= False, then bit a cannot simultaneously be both True and False. Multiple bits can be 
concatenated to express N = 2n unique states, where n is typically 8 (a byte), 16 or 32 bits. 
The N resulting states are also mutually exclusive. 
 
The defining properties of classical bits (i.e. a, b, c) are: 1) as above, the complementary state 
pair is mutually exclusive and 2) the state of each bit can be independently changed. These 
precise properties can be mathematically represented using vectors (i.e. a, b, c - in bold font), 
where each bit is denoted by a distinct vector. This simple choice of representing bits as 
vectors has many formal mathematical consequences that will be described in footnotes so as 
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not to disrupt the flow of the article. Two orthonormal vectors (orthogonali and unit length) 
are graphically displayed in Figure 1 as a horizontal and a vertical line that define a plane. 
 

 
Figure 1. Two orthonormal vectors a and b 

 
A binary state is represented here using the ± orientation or direction of the bit vector and not 
its length, which is always one. Using vector a, bit state a = True can therefore be denoted as 
+a (orientation +1) and NOT a = False can be denoted as –a = a  (orientation –1). The scalar 
orientation coefficient c preceding the vector ca can have the real values of c = +1, –1, or 0, 
which naturally leads to a ternary state system (similar to tristate logic) with symmetric 
binary states of +1 = + and –1 = –, whereas 0 0a =  indicates vector a  has no presence. The 
choice of mapping bits/states into vectors/orientations defines a binary representation that is a 
formal linear system and can be shown to be Boolean complete [4]. A linear representation is 
important when building such a bridge between computer science and physics [5].  
 
Table 1 shows how to define the traditional “addition” operator, denoted as +, for this linear 
algebraic system. The addition of two vectors can be visualized as the address of a point in 
the plane of Figure 1, but the vector orientation coefficients follow the usual scalar addition 
rules in Table 1. This algebra is limited to the set of unit scalar values {0,+1,–1}, because this 
limited scalar set is sufficient to express all necessary distinctions. Table 1 represents modulo 
3 addition because repeatedly adding +1 produces the sequence of values 0 => +1 => –1 => 0. 
This choice is isomorphic to the modulo 3 set of values {0, 1, 2} but is symmetric around 0. 
Addition of any elements in the algebra always produces another element in the algebra.  
 

Table 1. Scalar Addition table for a + b = b + a  
 

a + b b = 0 b = +1 b = –1 

a = 0 0 +1 –1 
a = +1 +1 –1 0 
a = –1 –1 0 +1 

 
Using Table 1, an important propertyii for addition is + = =−a a a a . This codifies the 
existence of an additive inverse, complement, or negation state for each state in the algebra. 
Mutual exclusion of two complementary states can now be expressed as + = 0a a , which 
means the vector a can only point in one direction at a time because the value 0 has the 
special meaning of cannot occur. The symmetric +/– states naturally describe the destructive 

                                                 
i With i  = inner product; 0=a bi  means a and b are orthogonal and 1=a ai  means collinear 
ii Due to modulo 3 arithmetic then 2a = –a because 2a = a + a = –a therefore 2 = –1 and likewise a/2 = a/–1 = –a 



  
 
 
 
 
 
 
4 Quantum Computing Made Easy 

interference of bit vectors, which is critical for quantum computing. Ternary logic is different 
from traditional Boolean algebra (states of 0/1) because the latter has no third state, and hence 
confounds the states “the opposite of one” and “nothing”. Since addition is commutative (a + 
b = b + a) but subtraction is not (  − ≠ −a b b a ), we use the convention that the sign of the 
coefficient must always be associated with the particular element, for example, 

= + = + = +− −a b a b b a b a . 
 
The interpretation of 0 to mean cannot occur [6] is subtle, yet conceptually meaningful, and 
has these consequences. First, since 0 means cannot occur then a scalar multiplication of state 
vector by zero, such as 0 = 0a , simply means that the vector a does not occur or exist and 
can be removed without any additive effect on an expression (i.e. x + 0a = x). Therefore, the 
highlighted cells in Table 1 focus on the addition rules to input states with only the non-zero 
binary values. These cells can be summarized as the rule: like states invert and differing states 
pair-wise cancel. Second, assigning a state equation to 0 and then solving for the roots 
determines the orientation values of states that cannot occur thereby representing the non-
solutions of the system, which is the opposite of the conventional meaning. Third, in order for 
two vectors to exactly cancel, they must be simultaneous, so addition means concurrency in 
time. This interpretation is consistent with the non-causal nature of quantum computing states. 
Addition of states is called a co-occurrence [6] because it is impossible to distinguish 
between (or count) two identical tokens unless they are presented exactly concurrently. Two 
such identical tokens presented together represent 1 bit of information because it is 
impossible to know how many truly exist when presented sequentially [6]; {q.v.} chapter 4. 
 
With this brief groundwork in place for classical bits, mutually exclusive states, state 
inversion and the addition operator (with its interpretation of concurrency), the following 
section introduces how to represent a qubit (or quantum bit) plus the other properties required 
to change the qubit state. 
 
3. A Qubit Represented as the Sum of Two Vectors 
 
A qubit requires four states rather than the two states represented by a classical bit, yet still 
represents only one classical bit because the vectors are constrained to be redundantly 
encoded. Therefore, a minimum of two classical bit vectors {a0, a1} must be used to 
represent those four possible states. Since the two distinct and orthonormal bit vectors must 
both simultaneously be allowed to have any binary value, the obvious proposal for a qubit 
uses addition with all possible non-zero vector orientations: 
 

Qubit: A = ±a0 ±a1                                                       (1) 
 
There are four possible variations of signs for this sum and they are assigned the state labels 
A0 = +a0 –a1, A1 = –a0 +a1, A – = –a0 –a1, and A+ = +a0 +a1, whose meaning will soon be 
obvious. Similar to the process used for a single vector, we can show that A0 + A1 = 0 or A0 = 
–A1 because (a0 – a1) + (–a0 + a1) = 0, which means that states A0 and A1 are mutually 
exclusive. Likewise, states A+ and A – are mutually exclusive, because A – + A+ = 0 or A –= –A+. 
As with A0 and A1, the states A+ and A – are pair-wise collinear with the origin (and later these 
two sets themselves are shown to be orthogonal). Table 2 follows directly from Table 1 when 
all possible combinations of non-zero orientation values are analyzed (only highlighted cells 
in Table 1). It is convenient to think informally of this table as the non-solutions from solving 
Ax = 0, where the vector coefficients destructively cancel. 
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Table 2. Valid qubit states highlighted for ±a0 ±a1 
 

Row k a0 a1 A1 = +a0  a1  A0 = +a0  a1  A+ = +a0  a1  A – = +a0  a1  

R0 – – 0 0 + – 

R1 – + + – 0 0 
R2 + – – + 0 0 

R3 + + 0 0 – + 

Anti-symmetric sums         
are classical states 

Symmetric sums are 
superposition states 

Binary combinations 
of input states 

A1 = R1 – R2 A0 = R2 – R1 A+ = R0 – R3 A– = R3 – R0 
 
The four main rows of Table 2 show all the non-zero binary combinations of the orientations 
for vectors {a0, a1}. The four right columns show the possible expressions (of symmetric and 
anti-symmetric sums) with the non-zero or valid states highlighted. The vector and state 
names were chosen to represent the particular spin properties of the qubit, which acts like a 
redundantly coded classical bit with complementary states A0 = –A1. State A0 is selected when 
coefficient c0 for vector a0 is c0 = + and state A1 when the coefficient c1 for a1 is c1 = +, 
where c0 = –c1 Because of these properties A0 and A1 are called the classical states of the 
qubit. Similarly, state A+ is defined when vector coefficients c0 = c1 = + and state A – when 
vector coefficients c0 = c1 = –, thereby representing the superposition states (where A – = –A+). 
Figure 2 graphically illustrates these redundantly coded vector and state relationships. 
 

 
Figure 2. Vectors and States for qubit A = ±a0 ±a1 

 
It is evident from Figure 2 that the two pairs of states {A0, A1} and {A –, A+} are compound 
states that can be represented as a vector (or line) thru the origin, but at a 45 degree angle to 
either axis. Therefore the sum of vectors also acts like a redundantly encoded vector, because 
it represents two complementary states. Because of the redundancy, there is more than one 
way to represent the one classical bit’s worth of states in a qubit. Since the two pairs of states 
in Figure 2 are 90 degrees apart (which means orthogonal), they are called out of phase 
representation choices. From the physics perspective, state a0 is the spin up state (and –a0 
means NOT a0) while state a1 is the spin down state (and –a1 means NOT a1). The two 
classical states {A0, A1} represent a symmetrical spinning top pointing up or down. The two 
superposition states {A –, A+} act like a horizontal gyroscopic top supported on one end, so is 
simultaneously in both/neither of the up/down states. In quantum computing, each spin state 
is represented as a vector, whereas in classical computing each bit is represented as a vector. 
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The next topic is the operator that switches between classical and superposition states or 
phases, which requires multiplication. Table 3 defines the conventional scalar multiplication 
table for the preceding ternary values. The terms multiplication and product are overloaded in 
physics and mathematics, because products exist not only for scalars, but also for vectors: the 
inner products, outer products, tensor products and cross products. Not to be outdone, the 
primary multiplication operator of geometric algebra is called the geometric product. The 
geometric product of a state and an operator (applied on the right) produces a new state, 
where both states and operators are geometric algebra expressions. 

 
Table 3. Scalar Multiplication table for a * b = b * a 

 

a * b b = 0 b = +1 b = –1 

a = 0 0 0 0 

a = +1 0 +1 –1 

a = –1 0 –1 +1 
 
Scalar multiplication is straightforwardi and the highlighted cells in Table 3 represent the non-
zero binary combinations of the vector orientations. Those cells are equivalent to the XNOR 
(exclusive NOR) logic behavior, which is summarized as: like states produce +1 and differing 
states produce –1. XOR/XNOR based logic is identical to the odd/even parity operators and a 
direct result of the multiplication operator being related to XOR is the unexpected 
multiplicative inverse property: 1/a = a (when a 0≠ ). This property is true for both scalars 
and vectors. As will be shown next, vector multiplication is slightly more complicated in 
geometric algebra but this complexity enables much simplicity elsewhere.  
 
3.1. Geometric Product and Graded N-vectors 
 
The geometric product can now be defined for the multiplication of vectors. As the name 
implies, the geometric product is based on topological principles. The first simple premise is 
that multiplying two vectors (a b) produces an area-like object called a bivector, which is a 
different mathematical object type than either a scalar or a vector. Multiplying three vectors 
together (a b c) produces a volume-like object called a trivector. This is easy to understand by 

realizing that a scalar is a grade-0 object (denoted as 0A ), a vector is a grade-1 object 

1A , a bivector is a grade-2 object 2A , a trivector is a grade-3 object 3A , and in general 

an n-vector is a grade-n object nA  that defines an n-volume. Adding different grade objects 

creates a multivector of the form; A = 0A + 1A + 2A + ... + nA . A geometric algebra 

Gn spanned by n orthonormal vectors contains N = 2n unique graded elements found by 

expanding the expression (1+a)(1+b)… and defines 3N unique multivectors, (i.e. G 2 => 34 = 

81). In our definition, a qubit is a multivector: the sum of both grade-1 vectors in G2. 
 
Any bivector has an orientation coefficient just as a vector expression, but with the unusual 
geometric product identity a b = – b a. This property means that the geometric product is not 
commutative (more precisely, it is anticommutative) and is simply the algebraic expression of 
                                                 
i Scalar multiplication is naturally closed over the ternary values {0, –1, +1} 



  
 
 
 
 

 D. Matzke, C. D. Cantrell, M. Manthey 7 

the right-hand rule used in physics. The bivector orientation coefficient can be imagined as 
the right-hand thumb pointing to the front (or back) of a plane defined by a piece of paper and 
is depicted in Figure 3. The orientation is defined as the coefficient of any n-vector product in 
any grade spacei, so is equivalent to the parity of the vectors of the n-vector in a particular 
order. This article places the vectors in standard alphabetically sorted order. Since the 
geometric productii does not have an explicit operator, writing the product (a b) therefore 
means (a GP b), where the parentheses are optional. 
 

 
Figure 3. Geometric product is anticommutative 

 
3.2. Geometric Product and Spinor Operator 
 
The following examples demonstrate the anticommutative geometric product. Assume that a 
system is defined or spanned by a set of orthonormal vectors: G2 = span{a, b}. Now multiply 
vector a times bivector (a b) and use the topological simplificationsiii  a a = b b = +1. 
 

a (a b) = a a b = b                                                         (2) 
 
Similarly, multiply vector b times bivector (a b) and then repeatedly multiply result by (a b): 
 

b (a b) = b a b = –a b b = –a   
–a (a b) = –a a b = –b 

–b (a b) = –b a b = +a b b = a                                               (3) 
 
As graphically depicted in Figure 4, the repeated geometric product application of the 

bivector ( )a b  spins any state counter-clockwise and explains why the bivector ( )a b is 

referred to as a spinor. Multiplying by the bivector (–a b) spins the states in the clockwise 
direction, following the right-hand rule. The various qubit encodings are rotations of each 
other, so these states are rotationally invariant. You can now relax, since the spinor idea is the 
most difficult piece of physics and related mathematics in this article.  
 
The result of a vector multiplied twice by a bivector inverts that vector, which can be 
analyzed from only the operator perspective by squaring the operator and simplifying. 
  

(a b)2 = (a b)(a b) = a b a b = –a a b b  = –1                               (4) 

                                                 
i Due to the outer product, and equivalent to the vector cross product only in three dimensions 
ii Geometric product of vectors is the sum a b =  + ∧a b a bi of inner a bi  and outer ∧a b  products. 
iii The simplification of (a a) = 1 means a vector is collinear with itself and this represents the inner product a a = 1i  
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Figure 4. Bivector (a b) spins the state space counter-clockwise  

 

Since (a b)2 = –1, therefore the spinor S = (a b) = 1− . Because the spinor operator squared 
is the inverter (or S2 = NOT operator) the spinor operator is referred to as the square root of 

not:  S = ( )a b  = NOT . This is topologically easy to understand using Figure 4 and the 

anticommutative geometric producti. 
 
3.3. Reversibility, Unitary Operators, Phases and Pauli Operators  
 
The bivector spinor operator SA = (a0 a1) for a qubit A = (±a0±a1) is simply an even grade 
operator that switches between the odd grade classical and superposition phasesii and can be 
applied to any state. Also the inversion operator (SA)2 = –1 can be applied to any state. Both 

the inverter –1 0A∈  and the spinor SA 2A∈  are even grade operators, but they also have 

another important property, called reversibility. Classically speaking, a one-to-one mapping 
of states is often reversible but any many-to-one state mapping is irreversible. 
 
Just as the name suggests, reversibility refers to an operator that can be reversed or undone. 
Conventional classical computing, with traditional Boolean logic gates, is typically not 
reversible due to many-to-one state mappings (effectively, the arrival path is lost), which 
means information is erased and energy is consumed due to this erasure [7]. Classical 
computation is reversible by using only the 3-input and 3-output reversible Toffoli or Fredkin 
gates, rather than the conventional irreversible 2-input gates of NAND/NOR. 
 
Reversibility [8] is easy to describe mathematically with the understanding that all operators 
are implemented as products. Let’s assume a multivector system state X and a multivector 
operator Y forming some new multivector system state Z = X Y. To undo this operator means 
convert the state Z back into state X. This is possible by simply dividing by Y (or multiplying 
times 1/Y = Y –1) resulting in Z/Y = X Y/Y = X. The operator Y is reversible if and only if the 
multiplicative inverse W = 1/Y = Y –1 exists. An operator Y with this property (i.e. 1/Y exists) 
is called unitary because Y W = Y Y –1 = +1 and this formal definition is semantically 
synonymous with any reversible operator Y. 

                                                 
i Due to these spinor properties, qubits are referred to as possessing spin ½. 
ii A spinor is the same as the Hadamard operator. 
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The good news about reversibility is that scalars (1/a = a), vectors (1/a = a), n-vectors (1/SA = 
–SA) and many multivectors (1/A0 = A1, 1/A– = A+) are reversible because geometric products 
are invertiblei [3]. The term invertible means (to physicists) that expressions have a 
multiplicative inverse. This term should not be confused with the similar sounding logical 
inverse, which is implemented in geometric algebra as the additive inverse (or negation).  
 
A useful multivector example PA = –1 + SA, is invertible (1/PA = 1 + SA) and has several 
other properties. First, PA is of even grade just like its additive operands. Second, (PA)2 = SA 

so consequently
A

S  = ±PA. It is now possible to summarize the previously seen discrete 

phase relationships: +1 = 360°, NOT = 1+ = 180°, spinor = NOT = 90°, so the square root 
of an operator (if it exists) is related to dividing the spin angle in half and similarly the third 
root angle is 360°/3 = 120°, etc.  Third, since the operator –1 means inversion and SA means 
phase spin, then with our interpretation of addition, PA is simultaneously an inversion and 
phase shift! Here are the results of the Pauli operator PA applied to the four qubit states.  
 

A0 PA = A0 (–1) + A0 SA = A1 + A+ = (–a0 + a1) + (a0 + a1) = –a0 + a0 + a1 + a1 = –a1 
A1 PA = A0 + A– = +a1 
A – PA = A+ + A0 = –a0 
A+ PA = A – + A1 = +a0                                                     (5) 

 
The Pauli operator PA reversibly maps the classical states A1/0 to the vertical vector ±a1 and 
maps the superposition states A± to the horizontal vector ±a0. As expected and as graphically 
seen in Figure 5, this represents a discrete 45 degree phase encoding away from the classical 
and superposition axes. The inversion and spinor operators still function as expected for this 
representation. This vector encodingii emphasizes the classical/superposition meaning of the 
vectors rather than the spin up/down meaning, yet both interpretations are valid. 

 
Figure 5. Phase Encodings of 180°, 90° and 45° for qubit A = (±a0±a1) 

 

All three Pauli operators have now been discussed (
1

σ = –1, 
3

σ = SA, 
2

σ = PA). This is 

important to quantum computing mathematics because the Pauli operators represent the 
reversible even-grade operators that encode how noise can affect a qubit state as either a bit 
inversion, a phase shift, or both a bit & phase shift simultaneously. Likewise, the odd-grade 
reversible operators ±a0, ±a1 and (±a0±a1) also produce alternate encodings to the even 

                                                 
i Neither the inner nor outer products are invertible by themselves 
ii “Encoding” means basis: classical = standard basis, superposition = dual basis, and circular basis = ±1±SA 
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grade planei formed by the axes ±1 and ±SA. Quantum computation primarily involves 
reversibly rotating a qubit encoding through a phase angleii without erasing the bit of 
information stored in the qubit, so all single-qubit operators are specific kinds of phase gates. 
 
Of the total of 3N–1 = 80 possible qubit multivectors (excludes state 0), 48 are reversible 
because they are invertibleiii. The remaining 32 multivectors do not have multiplicative 
inverses and are thus irreversible. The next section describes how to identify these 
irreversible operators. Of the 80 possible multivector states, 40 multivectors are the additive 
inverses of the other 40, and all of these 40 unique states are discussed as sets in this article. 
 
3.4. Irreversibility, Singular Operators, Erasure and Measurement 
 
Irreversible operators are important in quantum mechanics because they erase the information 
encoded in a qubit. Losing information is bad, because the wrong answer will emerge when 
asking for an answer with a measurement question. This situation is problematic for qubits 
because noise is equivalent to an unwanted operator. If the system is in an “unexpected” state, 
then the basis-based question asked (see below) will ipso facto be ill-formed, resulting in a 
random binary answer from the measurement. Additionally, all measurement operators are 
irreversible and destroy the qubit state by setting the qubit to the questioned state. Extracting 
the information stored in a qubit destroys the state, so there is only one chance. This is similar 
to old core memory systems, which required writing the data back after a destructive read. 
 
The simplest non-invertible multivector has the form X = (±1±x), where x is any 1-vector. 
Simply stated, because X –1 = (±1±x)–1 does not exist, then X is called singular 

iv. This fact is 
the basis for all other singular operators of a qubit because using the product X Y = Z, if either 
factor X or Y is singular then so is Z v. Alternatively, when X is unitary then X –1 exists and the 
multivector X is non-singular.  
 
All of the 32 singular multivectors of a qubit contain one of the factors (±1±x), and they are: 
(±1±a0) = 4, (±1±a1) = 4, a0(±1±a1) = 4, a1(±1±a0) = 4, (±1±a0)(±1±a1) = 8 and the 
opposite order (±1±a1)(±1±a0) = 8 for a total of 4 + 4 + 4 + 4 + 8 + 8 = 32 unique singular 
multivectors. As is shown below, all of these singular operators are related to measurement 
and information erasure. Each operator X in the list above was proved to be singular by 
exhaustively attempting to solve the equality X Y = 1, for each of the possible 80 multivectors 
Y, and no solutions were found. For expressions involving multiple qubits, other singular 
expressions exist, however, that do not have (±1±x) as a factor. 
 
Knowing exactly how measurement occurs, answers are extracted, and information is erased, 
in a qubit is important for quantum computing, and singular operators are an important clue to 
this understanding. Essentially, a measurement entails asking what state orientation a 
particular vector currently possesses.  In geometric algebra, a multivector of the form X =     
(–1)(1 ± x) can be used to isolate only the state cases for orientation ±x and so is equivalent to 
testing or decoding vector x for a particular orientation, denoted as X±. Each of the four output 
columns in Table 4 represents one of the singular expressions of the form (–1)(1 ± x). 

                                                 
i Identical to real (scalars) and imaginary axes (SA = i) as represented in complex numbers.  
ii Geometric algebra rotators a’= R Ra � : with 1 2 ,R α β= − e e  1 2 ,R α β= + e e�  cos( / 2), sin( / 2)α θ β θ= =  
iii Formal definition of unitary is |det(X)| = +1, which is true for all non-singular multivectors X if det(X)<>0 [9] 
iv X is singular if det(X) = 0 because X –1 becomes infinite due to X –1 being dependent on 1/det(X) 
v For X Y = Z, then det(X)det(Y) = det(Z), so if det(X) = 0 or det(Y) = 0 then det(Z) = 0 



  
 
 
 
 

 D. Matzke, C. D. Cantrell, M. Manthey 11 

Table 4. Specifying a particular vector orientation in G 2 = span{a0, a1}. 
 

Row k a0 a1 (–1)(1 – a0) (–1)(1 + a0) (–1)(1 – a1) (–1)(1 + a1) 
R0 – – + 0 + 0 
R1 – + + 0 0 + 
R2 + – 0 + + 0 
R3 + + 0 + 0 + 

Summation of Rk  A0– = R0 + R1 A0+ = R2 + R3 A1– = R0 + R2 A1+ = R1 + R3 
Denoted as Vectori  [+ + 0 0] [0 0 + +] [+ 0 + 0] [0 + 0 +] 

 
In every column, two rows contain the + state and two rows contain the 0 state. When this 
expression is used as an operator it effectively creates a notch filter that only passes the non-
zero states. By combining two orientation choices using the geometric product, a particular 
row can be selected, which specifies the logically combined state A0± and A1±, so each row Rk 
represents a cell in a Boolean logic Karnaugh mapii used by conventional logic designers. 
 

A0± A1± = (–1)(1 ± a0)(–1)(1 ± a1) = (1 ± a0)(1 ± a1) = (1 ±a0 ±a1 ±a0 a1), whence 
A0– A1– = (1 – a0 – a1 + a0 a1) 
A0– A1+ = (1 + a0 – a1 – a0 a1) 
A0+ A1– = (1 – a0 + a1 – a0 a1) 
A0+ A1+ = (1 + a0 + a1 + a0 a1)                                             (6) 

 
Table 5. Specifying two vector orientations in G 2 

 

Row k a0 a1 (1–a0)(1–a1) (1–a0)(1+a1) (1+a0)(1–a1) (1+a0)(1+a1) 
R0 – – + 0 0 0 
R1 – + 0 + 0 0 
R2 + – 0 0 + 0 
R3 + + 0 0 0 + 
State logic  R0 = A0– A1– R1 = A0– A1+ R2 = A0+ A1– R3 = A0+ A1+ 

Denoted as Vector  R0 = [+ 0 0 0] R1 = [0 + 0 0] R2 = [0 0 + 0] R3 = [0 0 0 +] 
 
Table 5 illustrates these singular expressions, which represent the topologically smallest 
features in a qubit representation. These row-decode operators, Rk are linearly independent 
and all other expressions can be derived by summing specific rows, so each algebraic 
expression has a unique, dual, sparse representation expressed as the sum of Rk. The inverse 
of Rk is denoted as Pk = –Rk. The compact vector-like notation [R0 R1 R2 R3] expresses these 
states, where the row values Rk ∈  {0, –, +} are the values of the expressions for every non-
zero combination of vector orientations. This vector notation can be thought of as a matrix 
diagonal because R0+R1+R2+R3 = [+ + + +] = +1, and P0+P1+P2+P3 = [– – – –] = –1. The 
vector notations for several other familiar multivectors are: a0 = [– – + +], a1 = [– + – +],    
SA = [+ – – +], A0 = [0 – + 0], A1 = [0 + – 0], A+ = [+ 0 0 –],  A– = [– 0 0 +] and PA = [0 + + 0]. 
Element by element vector addition is identical to algebraic addition, for example the sum:  
a0 + a1 = [– – + +] + [– + – +] = [+ 0 0 –] = A+, because the Rk are linearly independent. 

                                                 
i The vector notation is the set of Rk denoted as a vector [R0 R1 R2 R3 …] and is used extensively in this paper. 
ii Rk are the computational basis: different from standard basis since multiplication=XNOR vs. AND in Hilbert space 
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The overall qubit singular-operator relationships are now shown in Table 6, which illustrates 
the answer to measuring the four qubit states (in first column) from the perspective of each 
singular row-decode operator Rk = A0± A1±. This table is an example of a set of one-to-one 
mappings that is irreversible because the mapping operators are singular and so cannot be 
undone. Classical Boolean logic systems do not have the concept of singular operators. 
 

Table 6. Qubit measurement results for G 2 
 

Each start state A times each Rk Start States A  
A(1+a0)(1–a1) A(1–a0)(1+a1) A(1+a0)(1+a1) A(1–a0)(1–a1) 

A0 = + a0 – a1 –1 + a1 = +I  +1 + a1 = −I  –a0 (+1 + a1) +a0 (–1 + a1) 

A1 = – a0 + a1 +1 – a1 = −I  –1 – a1 = +I   –a0 (–1 – a1) +a0 (+1 – a1) 

A– = – a0 – a1 –a0 (–1 + a1) +a0 (+1 + a1) +1 + a1 = −I  –1 + a1 = +I  
A+ = + a0 + a1 –a0 (+1 – a1) +a0 (–1 – a1) –1 – a1 = +I   +1 – a1 = −I   
End State   A => + a0 – a1 A => – a0 + a1 A => + a0 + a1 A => – a0 – a1 
Description   Classical States Measurement  Superposition States Measurement 
 
Applying the singular operators Rk, Table 6 produces two kinds of singular answers, either a 
“sparse invariant” or a random value. The measurement returns the answer and the qubit 

changes to the end state after measurement. The resulting answers of the form (±1±a1) = ±I  
act like a constant since the non-zero output row-states are either all + or all –, as follows. 

This was originally hinted at in Table 4, where expressions –1 + a1 = [+ 0 + 0] = +I  and       

–1 – a1 = [0 + 0 +] = +I  are two out-of-phase examples of sparse invariants. This name was 

coined because the multivectors ±I  act like sparse versions of the constants ±1, with the 

properties − += −I I  and ( )2± +=I I . The sum of two out-of-phase versions of these 

invariants form the constants o o
+ +

0 90
+1 = +I I  = [+ + + +] and o o0 90

1 = +− −− I I  = [– – – –]. 

Any multivector of the form (±1±X) is a sparse invariant, where X is any n-vector. Not all 
sparse invariants are singular (e.g. PA = –1+SA = [0 + + 0]).  
 

From a measurement perspective, the sparse invariants ±I  represent a Boolean answer 

because the result is +I  or −I , and the qubit is projected to the end state matching the 

question. This process is irreversible because both Rk and ±I  are singular. From the sums of 
Rk or vector notation, it is easy to see how information is erased because the symmetryi of the 
qubit is broken. The symmetry is essentially based on which rows are valid, where the rows 
{R1, R2} are non-zero only for the classical states and the rows {R0, R3} are non-zero only for 
the superposition statesii. The sparse invariants include a row state from each pair of rows        

o0

+I = [+ 0 + 0] = R0 + R2 and o90

+I = [0 + 0 +] = R1 + R3, so the combined asymmetrical state 

is no longer linearly independent since it is the sum of non-orthogonal elementsiii. 

                                                 
i Symmetry or coherence, whereas asymmetry means decoherence 
ii Pair-wise orthogonal 

1 2
0R R =i  are the standard basis and 

0 3
0R R =i  are the dual basis. 

iii Non-orthogonal vectors cannot be used as the matrix basis vectors for quantum systems. 
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The row-pair symmetry is also broken by singular operators of the form (±a0 ± a0 a1) 
because a0 + a0 a1 = R1 – R3, –a0 – a0 a1 = R3 – R1, a0 – a0 a1 = R0 – R2, and –a0 + a0 a1 = 
R2 – R0. Each of these results looks like a random value because half the states are + and other 
half are –, or statistically random, in contrast to the invariants, which are all the same value. 
The row-decode operators Rk = A0± A1± are also asymmetrical since they each contain only 
one non-zero row. 
 
The above discussion utilizes only half of the singular states of a qubit. Exactly the same 
analysis can be performed using the anticommutative or dual versions of the row-decode 
operator products R7-k = A1± A0± (dual of Rk = A0± A1±) These expressions represent the other 
four multivectors of the form (1 ± a0 ± a1 ± a0 a1), where the sign is inverted for the 
bivector, resulting in all zero-valued row-states being converted to the – state. 
 

A1+ A0+ = (1 + a0 + a1 – a0 a1) = [+ – – –] = R7 where R0 = [+ 0 0 0]  
A1– A0+ = (1 + a0 – a1 + a0 a1) = [– + – –] = R6 where R1 = [0 + 0 0]  
A1+ A0– = (1 – a0 + a1 + a0 a1) = [– – + –] = R5 where R2 = [0 0 + 0]  
A1– A0– = (1 – a0 – a1 – a0 a1) = [– – – +] = R4 where R3 = [0 0 0 +]                (7) 

 
With the inverted operators P7-k = –R7-k also defined, then the following facts are true about 
R4-7: R4+R5+R6+R7 = +1 and P4+P5+P6+P7 = –1. The overall unitarityi property of a qubit is 
defined as P0+P1+P2+P3+P4+P5+P6+P7 = +1 and R0+R1+R2+R3+R4+R5+R6+R7 = –1. 
 
An important and interesting topological fact is that these set of eight multivectors have the 
invertiblity property X = 1/X = X –1, and therefore are self-unitary: X X –1 = X X = X 2 = 1. The 
multivectors in G2 with this propertyii have the form of Ek = (±a0 ±a1 ±a0 a1) and represent 
the eight corners of the cube in Figure 6, formed by the axes {±a0, ±a1, ±a0 a1}. These 
multivectors form the corners of the dual tetrahedrons formed by the sides Pk = –(1+Ek) or Ek 
= Rk –1 shown in Figure 7. Even though the axes are drawn in a cube, they are not orthogonal. 

 
Figure 6. Eight multivectors Ek define two sets (E0-3 and E7-4) of four corners 

 
The results in Figures 6 and 7 are topologically interesting and very relevant to matrix 
mathematics. One of the important results of the relationships, Rk = (1 + Ek) and (Ek)

2  = 1 is 
that the product [10] Ek Rk = Ek (1+Ek) = Ek+ (Ek)

2 = Ek +1 = Rk, which ultimately leads to the 
important resultiii that Pk Pk = (Pk)

2 = Pk, where the Pk form the sides of the dual tetrahedrons 
in Figure 7. Table 7 summarizes these multivector relationships including the sum of all Ek=0. 

                                                 
i Same as the unitarity constraint for qubits in Hilbert Space 
ii Property Ek Ek = 1 means the Ek are the eigenvectors and Pk = –(1+Ek) are the projection operators 
iii The Pk are idempotent (Pk)2 = Pk projection operators of the qubit, so are the eigenvalues of the eigenvectors Ek 
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Figure 7. Sides of a tetrahedron are formed by P0-3 on left and P7-4 on right 

 
The symmetric results in Table 7 show that our algebraic notation naturally describes a qubit 
and is formally equivalent to the matrix notation traditionally used for the same purpose. 
Even though establishing the foundational concepts of qubits relies on some fairly abstruse 
mathematics, once these are in place, one need only the relatively straightforward 
manipulation of geometric algebra to read, write, manipulate, interpret, and understand qubits. 
Nevertheless, quantum concepts themselves still constitute a relatively steep learning curve.  
 

Table 7. Summary of Definitions and Relationships between Rk, Pk and Ek 
 

Primary Tetrahedron Dual Tetrahedron 

k = Ek = Rk–1 Pk = –Rk  Rk = 1+Ek k = Ek = Rk–1 Pk = –Rk  Rk = 1+Ek 

0 [0 – – –] [– 0 0 0] [+ 0 0 0] 7 [0 + + +] [– + + +] [+ – – –] 

1 [– 0 – –] [0 – 0 0] [0 + 0 0] 6 [+ 0 + +] [+ – + +] [– + – –] 

2 [– – 0 –] [0 0 – 0] [0 0 + 0] 5 [+ + 0 +] [+ + – +] [– – + –] 

3 [– – – 0] [0 0 0 –] [0 0 0 +] 4 [+ + + 0] [+ + + –] [– – – +] 

sum [0 0 0 0] [– – – –] [+ + + +] sum [0 0 0 0] [– – – –] [+ + + +] 
 
The last remaining set of expressions from the 80 qubit statesi is called the trine states. Trines 
are mathematically easy to identify because they represent the eight solutions of the equality 
(Tr)3 = 1. The qubit solutions all have the form Tr = (+1 ± a0 ± SA) or Tr = (+1 ± a1 ± SA) 
and their inverses. The general form is the concurrent sum of the spinor and a singular 
operator of the form (+1 ±x). As expected and as seen in state evolution in Eq. (8), this 120° 
operator causes the state space to become asymmetrical. These operators are unitary though, 
because the multivector Tr is invertible since 1/Tr = (Tr)2. 
 

A0 = [0 + – 0] 
A0 (+1 + a0 + SA)  = (+1 – a0 + SA) = [0 + – +] 
A0 (+1 + a0 + SA)2 = (–1 + a0 – SA) = [0 + – –] 

A0 (+1 + a0 + SA)3 = A0 = [0 + – 0]                                 (8) 
 
The next section describes combining multiple qubits to form a quantum register. 

                                                 
i For the full table of 40/80 operators see table 7.2 in reference [4]. 
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4. Quantum Registers as Geometric Product of Qubits 
 

Multiple q qubits can be combined to form a quantum register Qq =Gn=2q that defines a space 
of size n = 2q. The state space of two qubitsi with n = 4 does not have the size of 4 + 4 = 8 
states, but rather N = 24 = 16 = 4 * 4 total states and 316 = 43,046,721 discrete multivectors. 
The number of states grows exponentially because combining qubits entails entangling their 
state spaces. Geometric algebra easily expresses qubit entanglement using the geometric 
productii. The entanglement of q = 2 qubits, defined as A = (±a0±a1) and B = (±b0±b1), is 
simply the geometric product A B of the qubits: 
 

A B = (±a0±a1)(±b0±b1) = ± a0 b0 ± a0 b1 ± a1 b0 ± a1 b1                     (9) 
 
This sum of four bivectors represents all the possible simultaneous combinations of the spin 
vectors. Recalling the spinor notation for each qubit (i.e. SA, SB, etc), these bivectors are 
actually cross-qubit spinors and are denoted as S00 = a0 b0, S01 = a0 b1, S10 = a1 b0 and S11 = 
a1 b1, with all vectors in the standard sorted order. The product of sums format on the left is 
mathematically identical to the sum of products format on the right. If a sum of bivectors can 
be factored back into a product of sums format, the entangled states are called separable. 
 
Specific examples with each qubit in specific states produce a vector notation with 16 rows. 
The number of states grows as N = 22q = 4q, but the number of non-zero states only grows as 
2q = 4. Notice that sum of products for A0 B1 is indistinguishable from A1 B0 so A0 B1 = A1 B0. 
 

A0 B0 = (a0–a1)(b0–b1) = +a0 b0 – a0 b1 – a1 b0 + a1 b1 

A0 B1 = (a0–a1)(b1–b0) = –a0 b0 + a0 b1 + a1 b0 – a1 b1 

A1 B0 = (a1–a0)(b0–b1) = –a0 b0 + a0 b1 + a1 b0 – a1 b1 
A+ B+ = (a0+a1)(b0+b1) = +a0 b0 + a0 b1 + a1 b0 + a1 b1                     (10) 

 
Using the multiplication principle 0 x = 0, then the valid or non-zero states of both qubits 
must be satisfied simultaneously. As shown in Table 8, if the 16 row vectorsiii are determined 
for the above examples, then the valid rows are: A0 B0 = –R5 +R6 +R9 –R10 and A+ B+ = R0 –R3 
–R12 +R15 based on the simultaneity constraint that both qubits are contributing non-zero 
states.  
 
As expected, the valid states of the system are just the valid states for each qubit spread out 
across a larger space. The green highlighted rows {R5, R6, R9, R10} indicate the classical states 
A0 and B0. The blue highlighted rows {R0, R3, R12, R15} indicate the superposed states A+ and 
B+. A very interesting intermediate result noted in the rose colored middle columns is an 
output state can only be zero if the sum of 2q bivector orientations exactly equals 0. This only 
occurs when all bivectors have exactly an equal number of both orientationsiv. Consequently, 
all non-zero outputs can occur only when all the bivector orientation coefficients have exactly 
the same sign. This pair-wise cancellation result is therefore independent of the mod 3 
addition conventions established initially. For more examples, discussion and proof see [4]. 

                                                 
i Gn=3 is called a qutrit where multivector state A = (±a0 ±a1 ±a2) and describes a spin-one particle like a photon. 
ii Geometric product is same as tensor product ⊗  in Hilbert spaces and tensor power 

nX ⊗
 is the power 

nX  
iii For Qq the Pk = –Rk are singular, but are idempotent only if the definition is extended to: (Pk)n=2q = Pk 
iv The number of spinors s=2q contains only even factors, so s/3 = ±1 ≠  0, so zero occurs only when +1 –1 = 0 
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Table 8. Valid rows for products A0 B0 and A+ B+ in Q2 
 

State Combinations Individual bivector products Column Vector 
Row k 

a0 a1 b0 b1 a0 b0 a0 b1 a1 b0 a1 b1 A+ B+ A0 B0 
R0 – – – – + + + + + 0 
R1 – – – + + – + – 0 0 
R2 – – + – – + – + 0 0 
R3 – – + + – – – – – 0 
R4 – + – – + + – – 0 0 
R5 – + – + + – – + 0 – 
R6 – + + – – + + – 0 + 
R7 – + + + – – + + 0 0 
R8 + – – – – – + + 0 0 
R9 + – – + – + + – 0 + 
R10 + – + – + – – + 0 – 
R11 + – + + + + – – 0 0 
R12 + + – – – – – – – 0 
R13 + + – + – + – + 0 0 
R14 + + + – + – + – 0 0 
R15 + + + + + + + + + 0 

Separable qubits each can be individually manipulated using the appropriate operators, and 
the operators can be thought of as being sequentially applied, producing various intermediate 
states. Due to non-commutative products, remember that A0 B0 = –B0 A0 (except for even 
grade operators that are commutative, such as B SA = SA B). 
 

A0 B0 SA = A0 SA B0 = A+ B0 = + a0 b0 – a0 b1 + a1 b0 – a1 b1 
A0 B0 SB = A0 B+ = + a0 b0 + a0 b1 – a1 b0 – a1 b1 

A0 B0 SA SB = A0 SA B0 SB = A+ B+ = + a0 b0 + a0 b1 + a1 b0 + a1 b1             (11) 

 
Also understand that the Pauli operators applied to both qubits define the cross-qubit spinors.  
 

A0 B0 PA PB = A0 PA B0 PB = a1 b1 = S11 and likewise  
A+ B+ PA PB = a0 b0 = S00    
 A+ B1 PA PB = a0 b1 = S01 
A1 B+ PA PB = a1 b0 = S10                                                                         (12) 

 
This implies that the sum of spinor products is identical to representing the qubits in four 
distinct states simultaneously (i.e. superposed) in the Pauli encoding. In fact, this is exactly 
the previous meaning of a sum of cross-qubit spinors, since addition means concurrent. 
 
4.1. Ebits and Bell States 
 
A very interesting result regarding two qubits is applying both spinors concurrently (SA + SB) 
rather than sequentially (SA SB) to produce an ebit. Half of the bivectors disappear due to 
destructive interference. As a consequence, this result is inseparable and the reason is the 
erasure of phase-states. Just as a single qubit is a computational resource due to superposition 
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of states, an ebit is also a computational resource because it encodes exactly one classical bit 
of information (one bit being erased), even if the qubits are separated by a large distance [11]. 
The ebit’s property is that of an Einstein-Podolsky-Rosen (EPR) communications resource. 
 
A0 B0 (SA + SB) = A+ B0 + A0 B+ = –a0 b0 + 0 a0 b1 + 0 a1 b0 + a1 b1 = –a0 b0 + a1 b1  (13) 
 
This state is one of the four Bell states 

i B i. The concurrent spinor B  = (SA + SB), which turns 
out to be the Bell operator, iteratively generates all four Bell states (B0 =>B1 =>B2 =>B3 
=>B0) using the formula B i+1 = B i B . Table 8 shows the very interesting result that the only 
valid states are where exactly one qubit occupies the superposition state at a time. The 
unlisted rows are zero, so do not occur. This property is also holds true for valid row states for 
any number of qubits as: A0 B0 C0 … (SA + SB + SC + …). This symmetry is quite fascinating! 

 
Table 8. Valid rows for ebit B0 in Q 2 

 
State Combinations Individual bivectors  

Row k 
a0 a1 b0 b1 –a0 b0 a1 b1 

Output column 

R1 – – – + – – + 
R2 – – + – + + – 
R4 – + – – – – + 
R7 – + + + + + – 
R8 + – – – + + – 
R11 + – + + – – + 
R13 + + – + + + – 
R14 + + + – – – + 

 
The even numbered Bell states are complements of each other B0 = –B2 and the same is true 
for the odd numbered states B1 = –B3. This suggests something about the square of the Bell 
operator and as expected, a higher dimensional version of the sparse invariants surfaces. 
 

B B  = (B )2 = +1 – SASB = [0– –0 –00–  –00– 0– –0] = −I  

 (B )4 = –1 + SASB = [0++0 +00+ +00+ 0++0] = +I                            (14) 
 
An important question is, “Is the Bell operator singular?” The answer is yes, because (B )–1 
does not exist [4], which means that once the Bell operator is applied, the combined states 
cannot be exited or escaped using a unitary operator. Applying the inverted operator –B 
evolves the states in the opposite direction B i–1 = B i (–B ). 
 
How the Bell operator erases information can easily be demonstrated once the magic operator 
and magic states are defined. The four magic statesii  (M0 =>M1 =>M2 =>M3 =>M0) are 
generated by the singular magic operator M  = (SA – SB) using the iteration M i+1 = M i M. 
The magic states produce 90° out-of-phase sparse invariants compared to the Bell versions. 
 

                                                 
i B 0 = –S00 + S11 = 

+Φ , B 1 = S01 + S10 = 
+Ψ , B 2 = S00 – S11 = 

−Φ , B 3 = – S01 – S10 = 
−Ψ  

ii M0 = S01 – S10, M 1 = –S00 – S11, M2 = – S01 + S10, M 3 = S00 + S11 
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M M = (M )2 = +1 + SASB = [–00– 0– –0 0– –0 –00–] = −I  

(M )4 = –1 – SASB = [+00+ 0++0 0++0 +00+] = +I                             (15) 
 

It is possible to switch reversibly between the Bell and the magic states because M3 = B2 
(S01+S10). An important relation for Bell and magic states is: B i M = M i B = 0, which 
follows from the complete destructive interference of these state and operator spinors. Armed 
with this knowledge, one can usefully express the original entanglement equations as the sum 
of Bell and magic states. 
 

A B = (±a0±a1)(±b0±b1) = ± a0 b0 ± a0 b1 ± a1 b0 ± a1 b1 = B j + M i        (16) 
 
Some particular examples are: 
 

A0 B0 = (a0–a1)(b0–b1) = + a0 b0 – a0 b1 – a1 b0 + a1 b1 = B3 + M3 
A+ B+ = (a0+a1)(b0+b1) = + a0 b0 + a0 b1 + a1 b0 + a1 b1 = B1 + M3           (17) 

 
Therefore, independent of the starting state, half of the states are always multiplicatively 
erased when applying either the Bell or magic operators because B i M = M i B = 0. These 
results show that information is erased and these operators are irreversible, since a many-to-
one mapping occurs due to erasure, as illustrated with the examples A0 B0 M and A+ B+ M: 
 

A0 B0 B = B0 + 0 and A0 B0 M = 0 + M0 
A+ B+ B = B2 + 0 and A+ B+ M = 0 + M0                                    (18) 

 
A simple proof that B and M are singular can also be realized using the Cancellation 
Principle of Multiplication of multivectors which states: if X Y = X Z then Y = Z if and only if 
1/X exists. The proof uses an example: if X = Y = B and Z = PA PB (–1), it can be shown that: 
 

B B = B PA PB (–1) = 1 – SASB is always True but 
Z = PA PB (–1) = –1 + SA+ SB – SASB = B – (1 + SASB)                        (19) 

 
The equality B = B – (1 + SASB) can be true only if (1 + SASB) = 0, which is always False 
even though the product B (1 + SASB) = 0 is always True. This contradiction therefore means 
B ≠  B – (1 + SASB) because 1/B does not existi and B is singular. Similarly, M is singular.   
 
The Bell and magic states can also be used as singular operatorsii to orient the states, because: 

B i B i = −I , B i B i+2 = +I  while B i B i+1 = B i B i-1 = random states, and likewise for M i. 
See Figure 8 for a graphical summary of the states, where PAB = PA PB. It is easy to 
understand that for three (or more) qubits, there are (q-1)2 = 4 equivalent Bell operators of the 
form (SA ± SB ± SC) and the same number of out-of-phase sets of Bell states with exactly the 
same properties discussed here. This concludes the discussion of ebits and the Bell and magic 
states. The next topic is the new operators that are possible for two qubits. 
 

                                                 
i Exhaustively searched the 43 million cases for solutions X in Q 2 where (SA±SB)(X) = 1 and found none.  
ii All B i and M i are singular because they respectively contain B  and M  as factors. 
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Figure 8. Summary of Bell and Magic States 

 
 
4.2. Conditional Operators CNOT and CSPIN 
 
The only logic-like operator for one qubit is inversion due to phase spinning. The new 
operators possible for two qubits are the so-called conditional operators (similar to the 
familiar if-then-else clauses) because one qubit acts as a control qubit forming a conditional 
gating state for the operator action on the other data qubit. Three or more qubits are required 
before conventional logic operations can be performed using fully reversible logic gates such 
as the Toffoli and Fredkin gates. 
 
The conditional form of inversion is called the control-not operator (CNOT) and the 
conditional spinor is called the control-spini operator (CSPIN). Both the CNOT and CSPIN 
operators are expressed as multivector operators that are applied using the geometric product. 
Conditional operators have the general behavior that if the state of a control qubit A is in state 
A1 then the operation is performed on data qubit B. Alternately if qubit A is in state A0 then 
the operation is not performed on qubit B. The CNOT operator performs a conditional 
inversion of the data qubit, while leaving the control qubit unchanged. 
 
Conditional operators are conceptually tricky with regard to quantum computing for the 
following reasons. First, it is easy to assume, based on classical computing ideas, that in order 
to “know” the state of the control qubit, it must be measured, which is problematic, if 
measurement erases information. Second, therefore the conditionality must occur by applying 
specific operators only to specific states. This is also problematic since the states are 
thoroughly mixed via entanglement, and it is hard to separate out just the ones you want. 
Third, geometric products of multivectors are unconditional since each n-vector element is 
jointly affected by every n-vector in the operator. The results achieved so far for one qubit are 
due to the natural unconditional behavior of geometric products, spinors, and destructive 
interference.  
 

An example of a conditional operator for one qubit is the reverseii operator, denoted as A� . As 
the name suggests, this operator simply reverses the order of the vectors in an n-vector A, but 

                                                 
i Control-spin is usually called a control-Hadamard gate in the literature. 
ii Reverse is identical to Hermitian adjoint 

†A = A�  used in matrices. If A = A�  then A is self-adjoint 
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this is not related to the concept of reversibility. If the vectors are then placed back in the 
standard vector order, then dependent on the overall grade of the particular n-vector, the 
coefficient will conditionally either remain the same or complement its orientation due to 
anticommutative operand swaps. The reverse of a multivector is the reverse of each graded 
element separately, where scalars and vectors are unaffected. Here are some examples. 
 

reverse(±1) = ±1 and  reverse(a) = a 
reverse(a b) = b a = –a b 

reverse(a b c) = c b a = –a b c 
reverse(a b c d) = d c b a = +a b c d 

reverse(a b c d e) = e d c b a = +a b c d e 
reverse(a b c d e f) = f e d c b a = –a b c d e f                                (20) 

 
Through use of the reverse operator and the operator A0 = (a0 – a1), a single qubit A can be 
reversibly encoded into the even-grade plane to represent a complex number (A0 A0 = –1,      
A1 A0 = +1, A– A0 = –SA, A+ A0 = SA). The operator equivalent to the requisite complex 
conjugate can then be performed using the reverse operator to invert conditionally only the 
sign of the imaginary (or bivector) portion. This result is then converted back into the 
standard qubit states using the operator A1 = (–a0 +a1). This sequence of steps A’ = 
reverse(A A0) A1 conditionally inverts only the superposition states A± and topologically 
represents a reflection of the states off one of the axis, but cannot be realized by using only 
the unconditional geometric product. The main point of this discussion is that in general, 
writing conditional operators in a reversible linear representation is not straightforward and 
requires specialized state preparation and operators (e.g. conjugation) other than geometric 
products. In spite of this general restriction, it is possible to realize CNOT and CSPIN as 
multivector operators. 
 
The earlier point regarding knowing the state of the control qubit is the inspiration behind the 
CNOT operator. As shown above for the complex number representation of a qubit, it is 
possible to encode a qubit in the even-grade plane using the operator A0 = (a0 – a1). The 
classical states A0/1 are mapped to ±1 respectively (an invariant) and the superposed states A± 
are mapped to ±SA (a random value). So the result of using any state as its own operator is 
like making a reversible encoding without breaking the symmetry of the qubit. This insight is 
the key to understanding that the control-not operator for control qubit A is CNOTAB = A0.  
Here are the results of entangling two qubits with the application of the CNOT operator. 
 

A0 B CNOTAB = (+1) B = +B => leave data qubit 

A1 B CNOTAB = (–1) B = –B => invert data qubit 
A– B CNOTAB = (+SA) B = SA(+B) => leave data qubit 

A+ B CNOTAB = (–SA) B = SA(–B) => invert data qubit                         (21) 
 
As expected, the CNOT operator maps the control qubit to the other encoding, but the right 
multiplication of the operator causes the sign to become inverted due to the non-commutative 
operation B A0 = –A0 B. The overall effect is to invert B depending on the state of A. It is 
useful to think that this reversible operator reassigns the information in qubit A to the sign of 
qubit B (remember A0 B1 = A1 B0). So qubit A now contains the state +1, which means A was 
classically encoded and +SA means A was encoded as a superposition. A control-not gate is 
intended to be defined only for classical control states, so the result containing the spinor SA 
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is correct. The same analysis derives the operator when the roles are swapped for the data and 
control qubits. Another way to think of this is that A1 and B define a simultaneous constraint. 
This result is not exactly the conventional definition of the control-not operator since the 
encoding of the control qubit is modified. This can be remedied if another qubit A’ is 
initialized to the same state A’= A, then the result is that the new qubit B includes a duplicate 
of the entangled information from A, and the qubit A is left intact and untouched. The 
duplicate must be created in parallel since copying or cloning a qubit requires a measurement. 
This restriction is called the no-cloning theorem of quantum information.  
 

A A’B CNOTA’B = A ( ∓ B) = ∓ A B                                              (22) 
 
Since (SA)2 = (spinor)2 = NOT the inspiration occurred to solve for (CSPIN)2 = CNOT, and 

the result is CSPIN = CNOT  = –1 + A0 (and its other root, and inverse of +1 + A1). This 
operator has the same concurrent structure as the Pauli spin operator, except with the 

concurrent operators being the inversion and reversible encoding. Since CSPIN = 4 1−  it 
indicates a 45 degree rotation. Interestingly, the Bell operators have this exact same structure 

where (B )2 = −I , and B  = (B )2 + B  = −I + B  and this structural similarity of equations 
is most likely a meaningful coincidence. The results of the CSPIN operator in Eq. (23) and 
Table 9 are interesting because they show the need for a mixed-grade multivector to encode 
the phase information.   
 

A0 B0 CSPINAB = B0 – A0 B0 = (b0 – b1) – a0 b0 + a0 b1 + a1 b0 – a1 b1 
A– B0 CSPINAB = SA B0 + A+ B0 = a0 a1 (b0 – b1) + a0 b0 – a0 b1 + a1 b0 – a1 b1    (23) 

 
For classical states of the control qubit A, Table 9 shows that the overall multivector 
orientation inverts depending on the control qubit state. The superposition states are also 
encoded, yet of the 16 possible rows only 6 rows are valid at once. The valid rows indicate 
what the valid states are and represent a simultaneous constraint system where the operators 
conditionally change the overall row states that are non-zero. This is clearly evident by the 
conditional validity of row-states R5, R6, R9 and R10 in Table 9. 
 

Table 9. Valid rows for A B CSPINAB 

 
Combinations A B CSPINAB = –A B + B0/1                     Rowk a0 a1 b0 b1 

Active 
States A0B(A0–1) A1B(A0–1) A0B(A0+1) A1B(A0+1) 

R1 – – – + A– &B1 + – + – 
R2 – – + – A– &B0 – + – + 
R5 – + – + A1 &B1 0 0 –  + 
R6 – + + – A1 &B0 0 0 +  

= b0 
– 

= b1 

R9 + – – + A0 &B1 – + 0 0 
R10 + – + – A0 &B0 + 

= b0 
– 

= b1 
0 0 

R13 + + – + A+ &B1 + – + – 
R14 + + + – A+ &B0 – + – + 

 
This concludes the new operators for Q2.
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5. Toffoli Operator is Concurrent CNOT 
 

The same process for the control-not gate can be expanded to Q3 in order to include two 
control qubits A, B and a data qubit D. The resulting control-control-not gate is called the 
Toffoli operator and only inverts qubit D when the control qubits are both active (denoted by 
the subscript 1) in states A1 and B1. The individual cases of single control-nots are first 
expressed to correctly account for the anticommutative operand swaps. The control qubits are 
indicated by the small subscript c, since it is not always the first one listed in an expression. 
 

A Bc D CNOTBD = A Bc D (B0) = A Bc B1 D = ± A D   (one operand swap)  
Ac B D CNOTAD = Ac B D (A1) = Ac A1 B D = ± B D   (two operand swaps) 

 
Now the Toffoli Operator is TOFABD  = CNOTAD + CNOTBD = A1+B0 = (–a0 + a1 + b0 – b1) 
and is reversible because (TOF)2 = +1. This simple grade-1 multivector operator and grade-2 
multivector outcome is a direct result of applying the concurrency interpretation of addition 
as discovered for the Bell operator. Here is the general Toffoli gate formula: 
 

Ac Bc D (TOFABD) = Ac Bc D (A1 + B0) = ± B D  ± A D                              (24) 
 
An particular case of Eq. (24) is now required in order to compute the valid rows in Table 10: 
 

A0 B0 D0 (TOFABD) = + a0 d0 – a0 d1 – a1 d0 + a1 d1 + b0 d0 – b0 d1 – b1 d0 + b1 d1 
= [00000+–0 0–+00000 0+–00–+0 00000+–0 0–+00000 0+–00–+0 00000+–0 0–+00000]    (25) 

 

Table 10. Valid row states for A0 B0 D0 (TOFABD) in Q 3 
 

State Combinations Rowk a0 a1 b0 b1 d0 d1 
Active 
States 

A0 B0 D0 (TOFABD) 

R21 – + – + – + A1 B1 & D1 – 
R22 – + – + + – A1 B1 & D0 + 

Inverted 

R41 + – + – – + A0 B0 & D1 + 
R42 + – + – + – A0 B0 & D0 – 

Identity 

8 rows Aclassical Bsuperpose Dclassical Ac Bs & Dc ± 
8 rows Asuperpose Bclassical Dclassical As Bc & Dc ± 

Mixed states 

44 rows All conditions not listed above none 0 Invalid  
 
Rows 21-22 in Table 10 represent the valid states where both control lines are active high and 
the output orientation is inverted compared to qubit D. Rows 41-42 represent the valid states 
when no inversion occurs, so the output orientation matches qubit D. Since the Toffoli gate 
TOFABD = (–a0 + a1 + b0 – b1), it is clear why three qubits in Q3 are necessary to express this 
operator. There are four variants of this operator,  A0+B0, A1+B0, A1+B0, and A1+B1, depending 
on the desired Boolean condition. 
 
Notice that no other row states are valid when both controls have classical states! This is 
important because, due to the overall symmetry in geometric algebra, designing arbitrary 
multiplicative operators is difficult, so in essence operators are discovered, not designed. 
This problem is akin to building a ship in a bottle, where the quantum state is analogous to a 
very high-dimensional bottle and only tools (or operators) that fit through the neck of the 
bottle (combinations of single qubit operators) are allowed. It is possible to design an 
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arbitrary state because the row states are linearly independent (given any vector notation can 
uniquely convert to the algebraic notation and vice versa). Some states can only be created via 
addition rather than with a multiplicative operator starting from a valid entangled qubit state. 
 
6. Conclusions 
 
The wealth of quantum computing concepts described here, using only addition and 
geometric products, is possible because geometric algebra naturally and implicitly captures 
the topological informational distinctions and constraints needed to represent qubits, ebits and 
familiar operators. This is the only possible interpretation of the co-occurrence of two vectors. 
Due to the power of geometric algebra to represent classical mechanics, gravitational 
contraction and quantum mechanics, it is called “a unified language for physics and 
engineering” [5]. This work extends that domain to include quantum information and 
quantum computation with straightforward, well-developed [4] and – most importantly – 
easily interpreted mathematics. This work presents a qubit algebra and as well demonstrates a 
linearly independent, dual, vector notation that is useful because it combines the topologically 
smallest elements in the algebra. 
 
It is interesting to see how unfamiliar but transparently meaningful algebraic rules emerge 
directly from the choice of symmetric binary values +1 and –1 and the mapping of co-
occurrence and co-exclusion to addition and the geometric product, i.e. a b = –b a and a a = 
1. This symmetry then impacts the symmetry of the addition and multiplication operators, i.e. 
1/a = a, 2a = a + a = –a = a/2 and enables sparse invariants. This symmetry is reinforced 
because qubits are the sum of two vectors, which results in many counts being a power of 2. 
As a result, the additive and multiplicative inverses become interchangeable as A0= –A1= 1/A1, 
but also sequential and concurrency ideas herewith intersect, e.g. Rk Rk = Rk + Rk = Pk. One 
should remember that the mathematics describing quantum mechanics is algebraically closed, 
and so is equivalent to bouncing a light beam around inside a hollow mirrored sphere. 
 
Quantum computing works because it relies on the intrinsically high-dimensional 
infrastructure of the quantum universe. John Wheeler’s paper “It from Bit” [13] stipulates that 
everything classical, including energy, matter, spacetime and even empty space, emerges 
from this bit soup (also called quantum ether or quantum foam) because the universe started 
as a “bit bang” [6,12]. Our geometric algebra approach algebraically and consistently 
describes topological quantum information forms as a massless high-dimensional topology 
and true concurrency without focusing on how it is projected into any of the classical 
properties of space, time or energy. This approach is consistent with extant quantum gravity 
theories treating the information mechanics of black holes (or bit buckets) [14].  
 
It is possible to make better decisions, to be smarter, with high-dimensional spaces [15] 
because more states can participate simultaneously in a decision, due to a higher locality 
metric and true concurrency. Quantum metrics and phenomena are not possible in 
computation restricted to classical spacetime. Spacetime itself limits the computational 
density by segregating [16] the required information locality and concurrency. This alone 
should motivate engineers and programmers to want to understand quantum computing: 
because it allows computers to cheat by computing outside the limiting spacetime box that 
occurs when representing bits classically. Because of the unusual and counterintuitive nature 
of quantum information, encouraging engineers and programmers to ascend the quantum 
computing learning curve will lead to an appreciation of the fundamental role of information 
in the quantum computing universe and might lead to general purpose quantum computers. 
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