

QUANTUM COMPUTING MADE EASY

Douglas J. Matzkei
matzke@ieee.org

University of Texas at Dallas
Richardson, Texas 75083-0688, USA

C. D. Cantrell

cantrell@utdallas.edu
University of Texas at Dallas

P.O. Box 830688, Mail Stop EC33
Richardson, Texas 75083-0688, USA

Michael Manthey

manthey@acm.org
P.O. Box 846

Crestone, Colorado 81131, USA

Received Oct 2002
Revised 2002

Quantum computing concepts are described using geometric algebra, without using complex
numbers or matrices. This novel approach was developed in the first author’s Ph.D. dissertation
in Electrical Engineering at University of Texas at Dallas (May 2002) and enables the expression
of the principle ideas of quantum computation without requiring an advanced degree in
mathematics or physics. Using a topologically derived algebraic notation that relies only on
addition and the anticommutative geometric product, this paper describes the following quantum
computing concepts: bits, vectors, states, orthogonality, qubits, classical states, superposition
states, spinor, reversibility, unitary operator, singular, entanglement, ebits, separability,
information erasure, destructive interference and measurement. These central quantum concepts
can be described simply in geometric algebra, thereby facilitating the understanding of quantum
computing concepts by non-physicists and non-mathematicians.

Keywords: Geometric algebra, qubits, ebits, spinors, quantum operators, sparse invariant states,
co-occurrence, co-exclusion

Communicated by:

1. Introduction

Quantum computing has received significant attention since the announcement of Shor’s
algorithm [1], which demonstrates that quantum computers can solve some extremely
computationally intensive problems more efficiently than any classical algorithm.

i Lawrence Technologies LLC, 5485 Beltline Road, Suite 200, Dallas, Texas 75254

2 Quantum Computing Made Easy

Unfortunately, hardware and software engineering for quantum computers requires different
sets of skills from either research on the physics of quantum computing or hardware/software
engineering for traditional computers. The goal of this paper is to lay a foundation for
hardware/software design for quantum computers that is accessible to traditional engineers
and computer scientists.

For newcomers to quantum computing the learning curve is steep for two primary reasons.
First, quantum computing is based on the principles of quantum physics and is typically
expressed mathematically using complex Hilbert space, which is a high-dimensional,
complete, vector space, using complex numbers and matrices. The matrix notation is concise
and compact, but also opaque to non-mathematicians. Second, quantum computation has
many new information concepts that do not naturally arise in classical computing and are
therefore unintuitive to traditionally trained engineers and programmers. The difficulty of
understanding these new concepts is compounded by the use of Dirac’s “bra-ket” notation [2],
since the reader must first comprehend the foreign-looking mathematical notation. This article
takes the approach of focusing on quantum computing concepts while relying on the
notationally simpler geometric algebra [3,4], which uses neither explicit complex numbers
nor matrices.

This article is targeted at engineers and programmers with a basic understanding of computer
science and mathematics who are interested in learning about quantum computing. From this
perspective, quantum computing is nothing more than an information system with very
particular “bit” properties and the approach of this relatively short article is to show the
design of a mathematically oriented process structure that naturally represents and models
these properties. The key bit and quantum-properties and their relatively simple mathematical
representation using geometrical algebra will be introduced when required and only as
needed. Bits form the building blocks of the computing industry and computer professionals
have very strong intuitions about them, so this article begins with that perspective.

2. Bits Represented as Vectors

A bit expresses a binary distinction, the smallest unit of information, and is physically the
space reserved (or bit capacity in a disk, memory, register, or communications channel) for a
single binary state value. The typical choice is to use the implementation-specific values 0/1
to symbolically represent mutually exclusive state pairs such as False/True, dark/light, or
male/female. Each binary-valued bit is usually given a symbolic name such as a or b to
facilitate describing how multiple bit-states causally interact (i.e. c = NOT a, d = a AND b,
using the Boolean algebra conventions with the standard logical operators NOT, AND, OR,
etc). A classical bit can only have two possible complementary states and most importantly,
these states are required to be mutually exclusive. For example, if states a = True and NOT a
= False, then bit a cannot simultaneously be both True and False. Multiple bits can be
concatenated to express N = 2n unique states, where n is typically 8 (a byte), 16 or 32 bits.
The N resulting states are also mutually exclusive.

The defining properties of classical bits (i.e. a, b, c) are: 1) as above, the complementary state
pair is mutually exclusive and 2) the state of each bit can be independently changed. These
precise properties can be mathematically represented using vectors (i.e. a, b, c - in bold font),
where each bit is denoted by a distinct vector. This simple choice of representing bits as
vectors has many formal mathematical consequences that will be described in footnotes so as

 D. Matzke, C. D. Cantrell, M. Manthey 3

not to disrupt the flow of the article. Two orthonormal vectors (orthogonali and unit length)
are graphically displayed in Figure 1 as a horizontal and a vertical line that define a plane.

Figure 1. Two orthonormal vectors a and b

A binary state is represented here using the ± orientation or direction of the bit vector and not
its length, which is always one. Using vector a, bit state a = True can therefore be denoted as
+a (orientation +1) and NOT a = False can be denoted as –a = a (orientation –1). The scalar
orientation coefficient c preceding the vector ca can have the real values of c = +1, –1, or 0,
which naturally leads to a ternary state system (similar to tristate logic) with symmetric
binary states of +1 = + and –1 = –, whereas 0 0a = indicates vector a has no presence. The
choice of mapping bits/states into vectors/orientations defines a binary representation that is a
formal linear system and can be shown to be Boolean complete [4]. A linear representation is
important when building such a bridge between computer science and physics [5].

Table 1 shows how to define the traditional “addition” operator, denoted as +, for this linear
algebraic system. The addition of two vectors can be visualized as the address of a point in
the plane of Figure 1, but the vector orientation coefficients follow the usual scalar addition
rules in Table 1. This algebra is limited to the set of unit scalar values {0,+1,–1}, because this
limited scalar set is sufficient to express all necessary distinctions. Table 1 represents modulo
3 addition because repeatedly adding +1 produces the sequence of values 0 => +1 => –1 => 0.
This choice is isomorphic to the modulo 3 set of values {0, 1, 2} but is symmetric around 0.
Addition of any elements in the algebra always produces another element in the algebra.

Table 1. Scalar Addition table for a + b = b + a

a + b b = 0 b = +1 b = –1

a = 0 0 +1 –1
a = +1 +1 –1 0
a = –1 –1 0 +1

Using Table 1, an important propertyii for addition is + = =−a a a a . This codifies the
existence of an additive inverse, complement, or negation state for each state in the algebra.
Mutual exclusion of two complementary states can now be expressed as + = 0a a , which
means the vector a can only point in one direction at a time because the value 0 has the
special meaning of cannot occur. The symmetric +/– states naturally describe the destructive

i With i = inner product; 0=a bi means a and b are orthogonal and 1=a ai means collinear
ii Due to modulo 3 arithmetic then 2a = –a because 2a = a + a = –a therefore 2 = –1 and likewise a/2 = a/–1 = –a

4 Quantum Computing Made Easy

interference of bit vectors, which is critical for quantum computing. Ternary logic is different
from traditional Boolean algebra (states of 0/1) because the latter has no third state, and hence
confounds the states “the opposite of one” and “nothing”. Since addition is commutative (a +
b = b + a) but subtraction is not (− ≠ −a b b a), we use the convention that the sign of the
coefficient must always be associated with the particular element, for example,

= + = + = +− −a b a b b a b a .

The interpretation of 0 to mean cannot occur [6] is subtle, yet conceptually meaningful, and
has these consequences. First, since 0 means cannot occur then a scalar multiplication of state
vector by zero, such as 0 = 0a , simply means that the vector a does not occur or exist and
can be removed without any additive effect on an expression (i.e. x + 0a = x). Therefore, the
highlighted cells in Table 1 focus on the addition rules to input states with only the non-zero
binary values. These cells can be summarized as the rule: like states invert and differing states
pair-wise cancel. Second, assigning a state equation to 0 and then solving for the roots
determines the orientation values of states that cannot occur thereby representing the non-
solutions of the system, which is the opposite of the conventional meaning. Third, in order for
two vectors to exactly cancel, they must be simultaneous, so addition means concurrency in
time. This interpretation is consistent with the non-causal nature of quantum computing states.
Addition of states is called a co-occurrence [6] because it is impossible to distinguish
between (or count) two identical tokens unless they are presented exactly concurrently. Two
such identical tokens presented together represent 1 bit of information because it is
impossible to know how many truly exist when presented sequentially [6]; {q.v.} chapter 4.

With this brief groundwork in place for classical bits, mutually exclusive states, state
inversion and the addition operator (with its interpretation of concurrency), the following
section introduces how to represent a qubit (or quantum bit) plus the other properties required
to change the qubit state.

3. A Qubit Represented as the Sum of Two Vectors

A qubit requires four states rather than the two states represented by a classical bit, yet still
represents only one classical bit because the vectors are constrained to be redundantly
encoded. Therefore, a minimum of two classical bit vectors {a0, a1} must be used to
represent those four possible states. Since the two distinct and orthonormal bit vectors must
both simultaneously be allowed to have any binary value, the obvious proposal for a qubit
uses addition with all possible non-zero vector orientations:

Qubit: A = ±a0 ±a1 (1)

There are four possible variations of signs for this sum and they are assigned the state labels
A0 = +a0 –a1, A1 = –a0 +a1, A – = –a0 –a1, and A+ = +a0 +a1, whose meaning will soon be
obvious. Similar to the process used for a single vector, we can show that A0 + A1 = 0 or A0 =
–A1 because (a0 – a1) + (–a0 + a1) = 0, which means that states A0 and A1 are mutually
exclusive. Likewise, states A+ and A – are mutually exclusive, because A – + A+ = 0 or A –= –A+.
As with A0 and A1, the states A+ and A – are pair-wise collinear with the origin (and later these
two sets themselves are shown to be orthogonal). Table 2 follows directly from Table 1 when
all possible combinations of non-zero orientation values are analyzed (only highlighted cells
in Table 1). It is convenient to think informally of this table as the non-solutions from solving
Ax = 0, where the vector coefficients destructively cancel.

 D. Matzke, C. D. Cantrell, M. Manthey 5

Table 2. Valid qubit states highlighted for ±a0 ±a1

Row k a0 a1 A1 = +a0 a1 A0 = +a0 a1 A+ = +a0 a1 A – = +a0 a1

R0 – – 0 0 + –

R1 – + + – 0 0
R2 + – – + 0 0

R3 + + 0 0 – +

Anti-symmetric sums
are classical states

Symmetric sums are
superposition states

Binary combinations
of input states

A1 = R1 – R2 A0 = R2 – R1 A+ = R0 – R3 A– = R3 – R0

The four main rows of Table 2 show all the non-zero binary combinations of the orientations
for vectors {a0, a1}. The four right columns show the possible expressions (of symmetric and
anti-symmetric sums) with the non-zero or valid states highlighted. The vector and state
names were chosen to represent the particular spin properties of the qubit, which acts like a
redundantly coded classical bit with complementary states A0 = –A1. State A0 is selected when
coefficient c0 for vector a0 is c0 = + and state A1 when the coefficient c1 for a1 is c1 = +,
where c0 = –c1 Because of these properties A0 and A1 are called the classical states of the
qubit. Similarly, state A+ is defined when vector coefficients c0 = c1 = + and state A – when
vector coefficients c0 = c1 = –, thereby representing the superposition states (where A – = –A+).
Figure 2 graphically illustrates these redundantly coded vector and state relationships.

Figure 2. Vectors and States for qubit A = ±a0 ±a1

It is evident from Figure 2 that the two pairs of states {A0, A1} and {A –, A+} are compound
states that can be represented as a vector (or line) thru the origin, but at a 45 degree angle to
either axis. Therefore the sum of vectors also acts like a redundantly encoded vector, because
it represents two complementary states. Because of the redundancy, there is more than one
way to represent the one classical bit’s worth of states in a qubit. Since the two pairs of states
in Figure 2 are 90 degrees apart (which means orthogonal), they are called out of phase
representation choices. From the physics perspective, state a0 is the spin up state (and –a0
means NOT a0) while state a1 is the spin down state (and –a1 means NOT a1). The two
classical states {A0, A1} represent a symmetrical spinning top pointing up or down. The two
superposition states {A –, A+} act like a horizontal gyroscopic top supported on one end, so is
simultaneously in both/neither of the up/down states. In quantum computing, each spin state
is represented as a vector, whereas in classical computing each bit is represented as a vector.

6 Quantum Computing Made Easy

The next topic is the operator that switches between classical and superposition states or
phases, which requires multiplication. Table 3 defines the conventional scalar multiplication
table for the preceding ternary values. The terms multiplication and product are overloaded in
physics and mathematics, because products exist not only for scalars, but also for vectors: the
inner products, outer products, tensor products and cross products. Not to be outdone, the
primary multiplication operator of geometric algebra is called the geometric product. The
geometric product of a state and an operator (applied on the right) produces a new state,
where both states and operators are geometric algebra expressions.

Table 3. Scalar Multiplication table for a * b = b * a

a * b b = 0 b = +1 b = –1

a = 0 0 0 0

a = +1 0 +1 –1

a = –1 0 –1 +1

Scalar multiplication is straightforwardi and the highlighted cells in Table 3 represent the non-
zero binary combinations of the vector orientations. Those cells are equivalent to the XNOR
(exclusive NOR) logic behavior, which is summarized as: like states produce +1 and differing
states produce –1. XOR/XNOR based logic is identical to the odd/even parity operators and a
direct result of the multiplication operator being related to XOR is the unexpected
multiplicative inverse property: 1/a = a (when a 0≠). This property is true for both scalars
and vectors. As will be shown next, vector multiplication is slightly more complicated in
geometric algebra but this complexity enables much simplicity elsewhere.

3.1. Geometric Product and Graded N-vectors

The geometric product can now be defined for the multiplication of vectors. As the name
implies, the geometric product is based on topological principles. The first simple premise is
that multiplying two vectors (a b) produces an area-like object called a bivector, which is a
different mathematical object type than either a scalar or a vector. Multiplying three vectors
together (a b c) produces a volume-like object called a trivector. This is easy to understand by

realizing that a scalar is a grade-0 object (denoted as 0A), a vector is a grade-1 object

1A , a bivector is a grade-2 object 2A , a trivector is a grade-3 object 3A , and in general

an n-vector is a grade-n object nA that defines an n-volume. Adding different grade objects

creates a multivector of the form; A = 0A + 1A + 2A + ... + nA . A geometric algebra

Gn spanned by n orthonormal vectors contains N = 2n unique graded elements found by

expanding the expression (1+a)(1+b)… and defines 3N unique multivectors, (i.e. G 2 => 34 =

81). In our definition, a qubit is a multivector: the sum of both grade-1 vectors in G2.

Any bivector has an orientation coefficient just as a vector expression, but with the unusual
geometric product identity a b = – b a. This property means that the geometric product is not
commutative (more precisely, it is anticommutative) and is simply the algebraic expression of

i Scalar multiplication is naturally closed over the ternary values {0, –1, +1}

 D. Matzke, C. D. Cantrell, M. Manthey 7

the right-hand rule used in physics. The bivector orientation coefficient can be imagined as
the right-hand thumb pointing to the front (or back) of a plane defined by a piece of paper and
is depicted in Figure 3. The orientation is defined as the coefficient of any n-vector product in
any grade spacei, so is equivalent to the parity of the vectors of the n-vector in a particular
order. This article places the vectors in standard alphabetically sorted order. Since the
geometric productii does not have an explicit operator, writing the product (a b) therefore
means (a GP b), where the parentheses are optional.

Figure 3. Geometric product is anticommutative

3.2. Geometric Product and Spinor Operator

The following examples demonstrate the anticommutative geometric product. Assume that a
system is defined or spanned by a set of orthonormal vectors: G2 = span{a, b}. Now multiply
vector a times bivector (a b) and use the topological simplificationsiii a a = b b = +1.

a (a b) = a a b = b (2)

Similarly, multiply vector b times bivector (a b) and then repeatedly multiply result by (a b):

b (a b) = b a b = –a b b = –a
–a (a b) = –a a b = –b

–b (a b) = –b a b = +a b b = a (3)

As graphically depicted in Figure 4, the repeated geometric product application of the

bivector ()a b spins any state counter-clockwise and explains why the bivector ()a b is

referred to as a spinor. Multiplying by the bivector (–a b) spins the states in the clockwise
direction, following the right-hand rule. The various qubit encodings are rotations of each
other, so these states are rotationally invariant. You can now relax, since the spinor idea is the
most difficult piece of physics and related mathematics in this article.

The result of a vector multiplied twice by a bivector inverts that vector, which can be
analyzed from only the operator perspective by squaring the operator and simplifying.

(a b)2 = (a b)(a b) = a b a b = –a a b b = –1 (4)

i Due to the outer product, and equivalent to the vector cross product only in three dimensions
ii Geometric product of vectors is the sum a b = + ∧a b a bi of inner a bi and outer ∧a b products.
iii The simplification of (a a) = 1 means a vector is collinear with itself and this represents the inner product a a = 1i

8 Quantum Computing Made Easy

Figure 4. Bivector (a b) spins the state space counter-clockwise

Since (a b)2 = –1, therefore the spinor S = (a b) = 1− . Because the spinor operator squared
is the inverter (or S2 = NOT operator) the spinor operator is referred to as the square root of

not: S = ()a b = NOT . This is topologically easy to understand using Figure 4 and the

anticommutative geometric producti.

3.3. Reversibility, Unitary Operators, Phases and Pauli Operators

The bivector spinor operator SA = (a0 a1) for a qubit A = (±a0±a1) is simply an even grade
operator that switches between the odd grade classical and superposition phasesii and can be
applied to any state. Also the inversion operator (SA)2 = –1 can be applied to any state. Both

the inverter –1 0A∈ and the spinor SA 2A∈ are even grade operators, but they also have

another important property, called reversibility. Classically speaking, a one-to-one mapping
of states is often reversible but any many-to-one state mapping is irreversible.

Just as the name suggests, reversibility refers to an operator that can be reversed or undone.
Conventional classical computing, with traditional Boolean logic gates, is typically not
reversible due to many-to-one state mappings (effectively, the arrival path is lost), which
means information is erased and energy is consumed due to this erasure [7]. Classical
computation is reversible by using only the 3-input and 3-output reversible Toffoli or Fredkin
gates, rather than the conventional irreversible 2-input gates of NAND/NOR.

Reversibility [8] is easy to describe mathematically with the understanding that all operators
are implemented as products. Let’s assume a multivector system state X and a multivector
operator Y forming some new multivector system state Z = X Y. To undo this operator means
convert the state Z back into state X. This is possible by simply dividing by Y (or multiplying
times 1/Y = Y –1) resulting in Z/Y = X Y/Y = X. The operator Y is reversible if and only if the
multiplicative inverse W = 1/Y = Y –1 exists. An operator Y with this property (i.e. 1/Y exists)
is called unitary because Y W = Y Y –1 = +1 and this formal definition is semantically
synonymous with any reversible operator Y.

i Due to these spinor properties, qubits are referred to as possessing spin ½.
ii A spinor is the same as the Hadamard operator.

 D. Matzke, C. D. Cantrell, M. Manthey 9

The good news about reversibility is that scalars (1/a = a), vectors (1/a = a), n-vectors (1/SA =
–SA) and many multivectors (1/A0 = A1, 1/A– = A+) are reversible because geometric products
are invertiblei [3]. The term invertible means (to physicists) that expressions have a
multiplicative inverse. This term should not be confused with the similar sounding logical
inverse, which is implemented in geometric algebra as the additive inverse (or negation).

A useful multivector example PA = –1 + SA, is invertible (1/PA = 1 + SA) and has several
other properties. First, PA is of even grade just like its additive operands. Second, (PA)2 = SA

so consequently
A

S = ±PA. It is now possible to summarize the previously seen discrete

phase relationships: +1 = 360°, NOT = 1+ = 180°, spinor = NOT = 90°, so the square root
of an operator (if it exists) is related to dividing the spin angle in half and similarly the third
root angle is 360°/3 = 120°, etc. Third, since the operator –1 means inversion and SA means
phase spin, then with our interpretation of addition, PA is simultaneously an inversion and
phase shift! Here are the results of the Pauli operator PA applied to the four qubit states.

A0 PA = A0 (–1) + A0 SA = A1 + A+ = (–a0 + a1) + (a0 + a1) = –a0 + a0 + a1 + a1 = –a1
A1 PA = A0 + A– = +a1
A – PA = A+ + A0 = –a0
A+ PA = A – + A1 = +a0 (5)

The Pauli operator PA reversibly maps the classical states A1/0 to the vertical vector ±a1 and
maps the superposition states A± to the horizontal vector ±a0. As expected and as graphically
seen in Figure 5, this represents a discrete 45 degree phase encoding away from the classical
and superposition axes. The inversion and spinor operators still function as expected for this
representation. This vector encodingii emphasizes the classical/superposition meaning of the
vectors rather than the spin up/down meaning, yet both interpretations are valid.

Figure 5. Phase Encodings of 180°, 90° and 45° for qubit A = (±a0±a1)

All three Pauli operators have now been discussed (
1

σ = –1,
3

σ = SA,
2

σ = PA). This is

important to quantum computing mathematics because the Pauli operators represent the
reversible even-grade operators that encode how noise can affect a qubit state as either a bit
inversion, a phase shift, or both a bit & phase shift simultaneously. Likewise, the odd-grade
reversible operators ±a0, ±a1 and (±a0±a1) also produce alternate encodings to the even

i Neither the inner nor outer products are invertible by themselves
ii “Encoding” means basis: classical = standard basis, superposition = dual basis, and circular basis = ±1±SA

10 Quantum Computing Made Easy

grade planei formed by the axes ±1 and ±SA. Quantum computation primarily involves
reversibly rotating a qubit encoding through a phase angleii without erasing the bit of
information stored in the qubit, so all single-qubit operators are specific kinds of phase gates.

Of the total of 3N–1 = 80 possible qubit multivectors (excludes state 0), 48 are reversible
because they are invertibleiii. The remaining 32 multivectors do not have multiplicative
inverses and are thus irreversible. The next section describes how to identify these
irreversible operators. Of the 80 possible multivector states, 40 multivectors are the additive
inverses of the other 40, and all of these 40 unique states are discussed as sets in this article.

3.4. Irreversibility, Singular Operators, Erasure and Measurement

Irreversible operators are important in quantum mechanics because they erase the information
encoded in a qubit. Losing information is bad, because the wrong answer will emerge when
asking for an answer with a measurement question. This situation is problematic for qubits
because noise is equivalent to an unwanted operator. If the system is in an “unexpected” state,
then the basis-based question asked (see below) will ipso facto be ill-formed, resulting in a
random binary answer from the measurement. Additionally, all measurement operators are
irreversible and destroy the qubit state by setting the qubit to the questioned state. Extracting
the information stored in a qubit destroys the state, so there is only one chance. This is similar
to old core memory systems, which required writing the data back after a destructive read.

The simplest non-invertible multivector has the form X = (±1±x), where x is any 1-vector.
Simply stated, because X –1 = (±1±x)–1 does not exist, then X is called singular

iv. This fact is
the basis for all other singular operators of a qubit because using the product X Y = Z, if either
factor X or Y is singular then so is Z v. Alternatively, when X is unitary then X –1 exists and the
multivector X is non-singular.

All of the 32 singular multivectors of a qubit contain one of the factors (±1±x), and they are:
(±1±a0) = 4, (±1±a1) = 4, a0(±1±a1) = 4, a1(±1±a0) = 4, (±1±a0)(±1±a1) = 8 and the
opposite order (±1±a1)(±1±a0) = 8 for a total of 4 + 4 + 4 + 4 + 8 + 8 = 32 unique singular
multivectors. As is shown below, all of these singular operators are related to measurement
and information erasure. Each operator X in the list above was proved to be singular by
exhaustively attempting to solve the equality X Y = 1, for each of the possible 80 multivectors
Y, and no solutions were found. For expressions involving multiple qubits, other singular
expressions exist, however, that do not have (±1±x) as a factor.

Knowing exactly how measurement occurs, answers are extracted, and information is erased,
in a qubit is important for quantum computing, and singular operators are an important clue to
this understanding. Essentially, a measurement entails asking what state orientation a
particular vector currently possesses. In geometric algebra, a multivector of the form X =
(–1)(1 ± x) can be used to isolate only the state cases for orientation ±x and so is equivalent to
testing or decoding vector x for a particular orientation, denoted as X±. Each of the four output
columns in Table 4 represents one of the singular expressions of the form (–1)(1 ± x).

i Identical to real (scalars) and imaginary axes (SA = i) as represented in complex numbers.
ii Geometric algebra rotators a’= R Ra � : with 1 2 ,R α β= − e e 1 2 ,R α β= + e e� cos(/ 2), sin(/ 2)α θ β θ= =
iii Formal definition of unitary is |det(X)| = +1, which is true for all non-singular multivectors X if det(X)<>0 [9]
iv X is singular if det(X) = 0 because X –1 becomes infinite due to X –1 being dependent on 1/det(X)
v For X Y = Z, then det(X)det(Y) = det(Z), so if det(X) = 0 or det(Y) = 0 then det(Z) = 0

 D. Matzke, C. D. Cantrell, M. Manthey 11

Table 4. Specifying a particular vector orientation in G 2 = span{a0, a1}.

Row k a0 a1 (–1)(1 – a0) (–1)(1 + a0) (–1)(1 – a1) (–1)(1 + a1)
R0 – – + 0 + 0
R1 – + + 0 0 +
R2 + – 0 + + 0
R3 + + 0 + 0 +

Summation of Rk A0– = R0 + R1 A0+ = R2 + R3 A1– = R0 + R2 A1+ = R1 + R3
Denoted as Vectori [+ + 0 0] [0 0 + +] [+ 0 + 0] [0 + 0 +]

In every column, two rows contain the + state and two rows contain the 0 state. When this
expression is used as an operator it effectively creates a notch filter that only passes the non-
zero states. By combining two orientation choices using the geometric product, a particular
row can be selected, which specifies the logically combined state A0± and A1±, so each row Rk
represents a cell in a Boolean logic Karnaugh mapii used by conventional logic designers.

A0± A1± = (–1)(1 ± a0)(–1)(1 ± a1) = (1 ± a0)(1 ± a1) = (1 ±a0 ±a1 ±a0 a1), whence
A0– A1– = (1 – a0 – a1 + a0 a1)
A0– A1+ = (1 + a0 – a1 – a0 a1)
A0+ A1– = (1 – a0 + a1 – a0 a1)
A0+ A1+ = (1 + a0 + a1 + a0 a1) (6)

Table 5. Specifying two vector orientations in G 2

Row k a0 a1 (1–a0)(1–a1) (1–a0)(1+a1) (1+a0)(1–a1) (1+a0)(1+a1)
R0 – – + 0 0 0
R1 – + 0 + 0 0
R2 + – 0 0 + 0
R3 + + 0 0 0 +
State logic R0 = A0– A1– R1 = A0– A1+ R2 = A0+ A1– R3 = A0+ A1+

Denoted as Vector R0 = [+ 0 0 0] R1 = [0 + 0 0] R2 = [0 0 + 0] R3 = [0 0 0 +]

Table 5 illustrates these singular expressions, which represent the topologically smallest
features in a qubit representation. These row-decode operators, Rk are linearly independent
and all other expressions can be derived by summing specific rows, so each algebraic
expression has a unique, dual, sparse representation expressed as the sum of Rk. The inverse
of Rk is denoted as Pk = –Rk. The compact vector-like notation [R0 R1 R2 R3] expresses these
states, where the row values Rk ∈ {0, –, +} are the values of the expressions for every non-
zero combination of vector orientations. This vector notation can be thought of as a matrix
diagonal because R0+R1+R2+R3 = [+ + + +] = +1, and P0+P1+P2+P3 = [– – – –] = –1. The
vector notations for several other familiar multivectors are: a0 = [– – + +], a1 = [– + – +],
SA = [+ – – +], A0 = [0 – + 0], A1 = [0 + – 0], A+ = [+ 0 0 –], A– = [– 0 0 +] and PA = [0 + + 0].
Element by element vector addition is identical to algebraic addition, for example the sum:
a0 + a1 = [– – + +] + [– + – +] = [+ 0 0 –] = A+, because the Rk are linearly independent.

i The vector notation is the set of Rk denoted as a vector [R0 R1 R2 R3 …] and is used extensively in this paper.
ii Rk are the computational basis: different from standard basis since multiplication=XNOR vs. AND in Hilbert space

12 Quantum Computing Made Easy

The overall qubit singular-operator relationships are now shown in Table 6, which illustrates
the answer to measuring the four qubit states (in first column) from the perspective of each
singular row-decode operator Rk = A0± A1±. This table is an example of a set of one-to-one
mappings that is irreversible because the mapping operators are singular and so cannot be
undone. Classical Boolean logic systems do not have the concept of singular operators.

Table 6. Qubit measurement results for G 2

Each start state A times each Rk Start States A
A(1+a0)(1–a1) A(1–a0)(1+a1) A(1+a0)(1+a1) A(1–a0)(1–a1)

A0 = + a0 – a1 –1 + a1 = +I +1 + a1 = −I –a0 (+1 + a1) +a0 (–1 + a1)

A1 = – a0 + a1 +1 – a1 = −I –1 – a1 = +I –a0 (–1 – a1) +a0 (+1 – a1)

A– = – a0 – a1 –a0 (–1 + a1) +a0 (+1 + a1) +1 + a1 = −I –1 + a1 = +I
A+ = + a0 + a1 –a0 (+1 – a1) +a0 (–1 – a1) –1 – a1 = +I +1 – a1 = −I
End State A => + a0 – a1 A => – a0 + a1 A => + a0 + a1 A => – a0 – a1
Description Classical States Measurement Superposition States Measurement

Applying the singular operators Rk, Table 6 produces two kinds of singular answers, either a
“sparse invariant” or a random value. The measurement returns the answer and the qubit

changes to the end state after measurement. The resulting answers of the form (±1±a1) = ±I
act like a constant since the non-zero output row-states are either all + or all –, as follows.

This was originally hinted at in Table 4, where expressions –1 + a1 = [+ 0 + 0] = +I and

–1 – a1 = [0 + 0 +] = +I are two out-of-phase examples of sparse invariants. This name was

coined because the multivectors ±I act like sparse versions of the constants ±1, with the

properties − += −I I and ()2± +=I I . The sum of two out-of-phase versions of these

invariants form the constants o o
+ +

0 90
+1 = +I I = [+ + + +] and o o0 90

1 = +− −− I I = [– – – –].

Any multivector of the form (±1±X) is a sparse invariant, where X is any n-vector. Not all
sparse invariants are singular (e.g. PA = –1+SA = [0 + + 0]).

From a measurement perspective, the sparse invariants ±I represent a Boolean answer

because the result is +I or −I , and the qubit is projected to the end state matching the

question. This process is irreversible because both Rk and ±I are singular. From the sums of
Rk or vector notation, it is easy to see how information is erased because the symmetryi of the
qubit is broken. The symmetry is essentially based on which rows are valid, where the rows
{R1, R2} are non-zero only for the classical states and the rows {R0, R3} are non-zero only for
the superposition statesii. The sparse invariants include a row state from each pair of rows

o0

+I = [+ 0 + 0] = R0 + R2 and o90

+I = [0 + 0 +] = R1 + R3, so the combined asymmetrical state

is no longer linearly independent since it is the sum of non-orthogonal elementsiii.

i Symmetry or coherence, whereas asymmetry means decoherence
ii Pair-wise orthogonal

1 2
0R R =i are the standard basis and

0 3
0R R =i are the dual basis.

iii Non-orthogonal vectors cannot be used as the matrix basis vectors for quantum systems.

 D. Matzke, C. D. Cantrell, M. Manthey 13

The row-pair symmetry is also broken by singular operators of the form (±a0 ± a0 a1)
because a0 + a0 a1 = R1 – R3, –a0 – a0 a1 = R3 – R1, a0 – a0 a1 = R0 – R2, and –a0 + a0 a1 =
R2 – R0. Each of these results looks like a random value because half the states are + and other
half are –, or statistically random, in contrast to the invariants, which are all the same value.
The row-decode operators Rk = A0± A1± are also asymmetrical since they each contain only
one non-zero row.

The above discussion utilizes only half of the singular states of a qubit. Exactly the same
analysis can be performed using the anticommutative or dual versions of the row-decode
operator products R7-k = A1± A0± (dual of Rk = A0± A1±) These expressions represent the other
four multivectors of the form (1 ± a0 ± a1 ± a0 a1), where the sign is inverted for the
bivector, resulting in all zero-valued row-states being converted to the – state.

A1+ A0+ = (1 + a0 + a1 – a0 a1) = [+ – – –] = R7 where R0 = [+ 0 0 0]
A1– A0+ = (1 + a0 – a1 + a0 a1) = [– + – –] = R6 where R1 = [0 + 0 0]
A1+ A0– = (1 – a0 + a1 + a0 a1) = [– – + –] = R5 where R2 = [0 0 + 0]
A1– A0– = (1 – a0 – a1 – a0 a1) = [– – – +] = R4 where R3 = [0 0 0 +] (7)

With the inverted operators P7-k = –R7-k also defined, then the following facts are true about
R4-7: R4+R5+R6+R7 = +1 and P4+P5+P6+P7 = –1. The overall unitarityi property of a qubit is
defined as P0+P1+P2+P3+P4+P5+P6+P7 = +1 and R0+R1+R2+R3+R4+R5+R6+R7 = –1.

An important and interesting topological fact is that these set of eight multivectors have the
invertiblity property X = 1/X = X –1, and therefore are self-unitary: X X –1 = X X = X 2 = 1. The
multivectors in G2 with this propertyii have the form of Ek = (±a0 ±a1 ±a0 a1) and represent
the eight corners of the cube in Figure 6, formed by the axes {±a0, ±a1, ±a0 a1}. These
multivectors form the corners of the dual tetrahedrons formed by the sides Pk = –(1+Ek) or Ek
= Rk –1 shown in Figure 7. Even though the axes are drawn in a cube, they are not orthogonal.

Figure 6. Eight multivectors Ek define two sets (E0-3 and E7-4) of four corners

The results in Figures 6 and 7 are topologically interesting and very relevant to matrix
mathematics. One of the important results of the relationships, Rk = (1 + Ek) and (Ek)

2 = 1 is
that the product [10] Ek Rk = Ek (1+Ek) = Ek+ (Ek)

2 = Ek +1 = Rk, which ultimately leads to the
important resultiii that Pk Pk = (Pk)

2 = Pk, where the Pk form the sides of the dual tetrahedrons
in Figure 7. Table 7 summarizes these multivector relationships including the sum of all Ek=0.

i Same as the unitarity constraint for qubits in Hilbert Space
ii Property Ek Ek = 1 means the Ek are the eigenvectors and Pk = –(1+Ek) are the projection operators
iii The Pk are idempotent (Pk)2 = Pk projection operators of the qubit, so are the eigenvalues of the eigenvectors Ek

14 Quantum Computing Made Easy

Figure 7. Sides of a tetrahedron are formed by P0-3 on left and P7-4 on right

The symmetric results in Table 7 show that our algebraic notation naturally describes a qubit
and is formally equivalent to the matrix notation traditionally used for the same purpose.
Even though establishing the foundational concepts of qubits relies on some fairly abstruse
mathematics, once these are in place, one need only the relatively straightforward
manipulation of geometric algebra to read, write, manipulate, interpret, and understand qubits.
Nevertheless, quantum concepts themselves still constitute a relatively steep learning curve.

Table 7. Summary of Definitions and Relationships between Rk, Pk and Ek

Primary Tetrahedron Dual Tetrahedron

k = Ek = Rk–1 Pk = –Rk Rk = 1+Ek k = Ek = Rk–1 Pk = –Rk Rk = 1+Ek

0 [0 – – –] [– 0 0 0] [+ 0 0 0] 7 [0 + + +] [– + + +] [+ – – –]

1 [– 0 – –] [0 – 0 0] [0 + 0 0] 6 [+ 0 + +] [+ – + +] [– + – –]

2 [– – 0 –] [0 0 – 0] [0 0 + 0] 5 [+ + 0 +] [+ + – +] [– – + –]

3 [– – – 0] [0 0 0 –] [0 0 0 +] 4 [+ + + 0] [+ + + –] [– – – +]

sum [0 0 0 0] [– – – –] [+ + + +] sum [0 0 0 0] [– – – –] [+ + + +]

The last remaining set of expressions from the 80 qubit statesi is called the trine states. Trines
are mathematically easy to identify because they represent the eight solutions of the equality
(Tr)3 = 1. The qubit solutions all have the form Tr = (+1 ± a0 ± SA) or Tr = (+1 ± a1 ± SA)
and their inverses. The general form is the concurrent sum of the spinor and a singular
operator of the form (+1 ±x). As expected and as seen in state evolution in Eq. (8), this 120°
operator causes the state space to become asymmetrical. These operators are unitary though,
because the multivector Tr is invertible since 1/Tr = (Tr)2.

A0 = [0 + – 0]
A0 (+1 + a0 + SA) = (+1 – a0 + SA) = [0 + – +]
A0 (+1 + a0 + SA)2 = (–1 + a0 – SA) = [0 + – –]

A0 (+1 + a0 + SA)3 = A0 = [0 + – 0] (8)

The next section describes combining multiple qubits to form a quantum register.

i For the full table of 40/80 operators see table 7.2 in reference [4].

 D. Matzke, C. D. Cantrell, M. Manthey 15

4. Quantum Registers as Geometric Product of Qubits

Multiple q qubits can be combined to form a quantum register Qq =Gn=2q that defines a space
of size n = 2q. The state space of two qubitsi with n = 4 does not have the size of 4 + 4 = 8
states, but rather N = 24 = 16 = 4 * 4 total states and 316 = 43,046,721 discrete multivectors.
The number of states grows exponentially because combining qubits entails entangling their
state spaces. Geometric algebra easily expresses qubit entanglement using the geometric
productii. The entanglement of q = 2 qubits, defined as A = (±a0±a1) and B = (±b0±b1), is
simply the geometric product A B of the qubits:

A B = (±a0±a1)(±b0±b1) = ± a0 b0 ± a0 b1 ± a1 b0 ± a1 b1 (9)

This sum of four bivectors represents all the possible simultaneous combinations of the spin
vectors. Recalling the spinor notation for each qubit (i.e. SA, SB, etc), these bivectors are
actually cross-qubit spinors and are denoted as S00 = a0 b0, S01 = a0 b1, S10 = a1 b0 and S11 =
a1 b1, with all vectors in the standard sorted order. The product of sums format on the left is
mathematically identical to the sum of products format on the right. If a sum of bivectors can
be factored back into a product of sums format, the entangled states are called separable.

Specific examples with each qubit in specific states produce a vector notation with 16 rows.
The number of states grows as N = 22q = 4q, but the number of non-zero states only grows as
2q = 4. Notice that sum of products for A0 B1 is indistinguishable from A1 B0 so A0 B1 = A1 B0.

A0 B0 = (a0–a1)(b0–b1) = +a0 b0 – a0 b1 – a1 b0 + a1 b1

A0 B1 = (a0–a1)(b1–b0) = –a0 b0 + a0 b1 + a1 b0 – a1 b1

A1 B0 = (a1–a0)(b0–b1) = –a0 b0 + a0 b1 + a1 b0 – a1 b1
A+ B+ = (a0+a1)(b0+b1) = +a0 b0 + a0 b1 + a1 b0 + a1 b1 (10)

Using the multiplication principle 0 x = 0, then the valid or non-zero states of both qubits
must be satisfied simultaneously. As shown in Table 8, if the 16 row vectorsiii are determined
for the above examples, then the valid rows are: A0 B0 = –R5 +R6 +R9 –R10 and A+ B+ = R0 –R3
–R12 +R15 based on the simultaneity constraint that both qubits are contributing non-zero
states.

As expected, the valid states of the system are just the valid states for each qubit spread out
across a larger space. The green highlighted rows {R5, R6, R9, R10} indicate the classical states
A0 and B0. The blue highlighted rows {R0, R3, R12, R15} indicate the superposed states A+ and
B+. A very interesting intermediate result noted in the rose colored middle columns is an
output state can only be zero if the sum of 2q bivector orientations exactly equals 0. This only
occurs when all bivectors have exactly an equal number of both orientationsiv. Consequently,
all non-zero outputs can occur only when all the bivector orientation coefficients have exactly
the same sign. This pair-wise cancellation result is therefore independent of the mod 3
addition conventions established initially. For more examples, discussion and proof see [4].

i Gn=3 is called a qutrit where multivector state A = (±a0 ±a1 ±a2) and describes a spin-one particle like a photon.
ii Geometric product is same as tensor product ⊗ in Hilbert spaces and tensor power

nX ⊗
 is the power

nX
iii For Qq the Pk = –Rk are singular, but are idempotent only if the definition is extended to: (Pk)n=2q = Pk
iv The number of spinors s=2q contains only even factors, so s/3 = ±1 ≠ 0, so zero occurs only when +1 –1 = 0

16 Quantum Computing Made Easy

Table 8. Valid rows for products A0 B0 and A+ B+ in Q2

State Combinations Individual bivector products Column Vector
Row k

a0 a1 b0 b1 a0 b0 a0 b1 a1 b0 a1 b1 A+ B+ A0 B0
R0 – – – – + + + + + 0
R1 – – – + + – + – 0 0
R2 – – + – – + – + 0 0
R3 – – + + – – – – – 0
R4 – + – – + + – – 0 0
R5 – + – + + – – + 0 –
R6 – + + – – + + – 0 +
R7 – + + + – – + + 0 0
R8 + – – – – – + + 0 0
R9 + – – + – + + – 0 +
R10 + – + – + – – + 0 –
R11 + – + + + + – – 0 0
R12 + + – – – – – – – 0
R13 + + – + – + – + 0 0
R14 + + + – + – + – 0 0
R15 + + + + + + + + + 0

Separable qubits each can be individually manipulated using the appropriate operators, and
the operators can be thought of as being sequentially applied, producing various intermediate
states. Due to non-commutative products, remember that A0 B0 = –B0 A0 (except for even
grade operators that are commutative, such as B SA = SA B).

A0 B0 SA = A0 SA B0 = A+ B0 = + a0 b0 – a0 b1 + a1 b0 – a1 b1
A0 B0 SB = A0 B+ = + a0 b0 + a0 b1 – a1 b0 – a1 b1

A0 B0 SA SB = A0 SA B0 SB = A+ B+ = + a0 b0 + a0 b1 + a1 b0 + a1 b1 (11)

Also understand that the Pauli operators applied to both qubits define the cross-qubit spinors.

A0 B0 PA PB = A0 PA B0 PB = a1 b1 = S11 and likewise
A+ B+ PA PB = a0 b0 = S00
 A+ B1 PA PB = a0 b1 = S01
A1 B+ PA PB = a1 b0 = S10 (12)

This implies that the sum of spinor products is identical to representing the qubits in four
distinct states simultaneously (i.e. superposed) in the Pauli encoding. In fact, this is exactly
the previous meaning of a sum of cross-qubit spinors, since addition means concurrent.

4.1. Ebits and Bell States

A very interesting result regarding two qubits is applying both spinors concurrently (SA + SB)
rather than sequentially (SA SB) to produce an ebit. Half of the bivectors disappear due to
destructive interference. As a consequence, this result is inseparable and the reason is the
erasure of phase-states. Just as a single qubit is a computational resource due to superposition

 D. Matzke, C. D. Cantrell, M. Manthey 17

of states, an ebit is also a computational resource because it encodes exactly one classical bit
of information (one bit being erased), even if the qubits are separated by a large distance [11].
The ebit’s property is that of an Einstein-Podolsky-Rosen (EPR) communications resource.

A0 B0 (SA + SB) = A+ B0 + A0 B+ = –a0 b0 + 0 a0 b1 + 0 a1 b0 + a1 b1 = –a0 b0 + a1 b1 (13)

This state is one of the four Bell states

i B i. The concurrent spinor B = (SA + SB), which turns
out to be the Bell operator, iteratively generates all four Bell states (B0 =>B1 =>B2 =>B3
=>B0) using the formula B i+1 = B i B . Table 8 shows the very interesting result that the only
valid states are where exactly one qubit occupies the superposition state at a time. The
unlisted rows are zero, so do not occur. This property is also holds true for valid row states for
any number of qubits as: A0 B0 C0 … (SA + SB + SC + …). This symmetry is quite fascinating!

Table 8. Valid rows for ebit B0 in Q 2

State Combinations Individual bivectors

Row k
a0 a1 b0 b1 –a0 b0 a1 b1

Output column

R1 – – – + – – +
R2 – – + – + + –
R4 – + – – – – +
R7 – + + + + + –
R8 + – – – + + –
R11 + – + + – – +
R13 + + – + + + –
R14 + + + – – – +

The even numbered Bell states are complements of each other B0 = –B2 and the same is true
for the odd numbered states B1 = –B3. This suggests something about the square of the Bell
operator and as expected, a higher dimensional version of the sparse invariants surfaces.

B B = (B)2 = +1 – SASB = [0– –0 –00– –00– 0– –0] = −I

 (B)4 = –1 + SASB = [0++0 +00+ +00+ 0++0] = +I (14)

An important question is, “Is the Bell operator singular?” The answer is yes, because (B)–1
does not exist [4], which means that once the Bell operator is applied, the combined states
cannot be exited or escaped using a unitary operator. Applying the inverted operator –B
evolves the states in the opposite direction B i–1 = B i (–B).

How the Bell operator erases information can easily be demonstrated once the magic operator
and magic states are defined. The four magic statesii (M0 =>M1 =>M2 =>M3 =>M0) are
generated by the singular magic operator M = (SA – SB) using the iteration M i+1 = M i M.
The magic states produce 90° out-of-phase sparse invariants compared to the Bell versions.

i B 0 = –S00 + S11 =

+Φ , B 1 = S01 + S10 =
+Ψ , B 2 = S00 – S11 =

−Φ , B 3 = – S01 – S10 =
−Ψ

ii M0 = S01 – S10, M 1 = –S00 – S11, M2 = – S01 + S10, M 3 = S00 + S11

18 Quantum Computing Made Easy

M M = (M)2 = +1 + SASB = [–00– 0– –0 0– –0 –00–] = −I

(M)4 = –1 – SASB = [+00+ 0++0 0++0 +00+] = +I (15)

It is possible to switch reversibly between the Bell and the magic states because M3 = B2
(S01+S10). An important relation for Bell and magic states is: B i M = M i B = 0, which
follows from the complete destructive interference of these state and operator spinors. Armed
with this knowledge, one can usefully express the original entanglement equations as the sum
of Bell and magic states.

A B = (±a0±a1)(±b0±b1) = ± a0 b0 ± a0 b1 ± a1 b0 ± a1 b1 = B j + M i (16)

Some particular examples are:

A0 B0 = (a0–a1)(b0–b1) = + a0 b0 – a0 b1 – a1 b0 + a1 b1 = B3 + M3
A+ B+ = (a0+a1)(b0+b1) = + a0 b0 + a0 b1 + a1 b0 + a1 b1 = B1 + M3 (17)

Therefore, independent of the starting state, half of the states are always multiplicatively
erased when applying either the Bell or magic operators because B i M = M i B = 0. These
results show that information is erased and these operators are irreversible, since a many-to-
one mapping occurs due to erasure, as illustrated with the examples A0 B0 M and A+ B+ M:

A0 B0 B = B0 + 0 and A0 B0 M = 0 + M0
A+ B+ B = B2 + 0 and A+ B+ M = 0 + M0 (18)

A simple proof that B and M are singular can also be realized using the Cancellation
Principle of Multiplication of multivectors which states: if X Y = X Z then Y = Z if and only if
1/X exists. The proof uses an example: if X = Y = B and Z = PA PB (–1), it can be shown that:

B B = B PA PB (–1) = 1 – SASB is always True but
Z = PA PB (–1) = –1 + SA+ SB – SASB = B – (1 + SASB) (19)

The equality B = B – (1 + SASB) can be true only if (1 + SASB) = 0, which is always False
even though the product B (1 + SASB) = 0 is always True. This contradiction therefore means
B ≠ B – (1 + SASB) because 1/B does not existi and B is singular. Similarly, M is singular.

The Bell and magic states can also be used as singular operatorsii to orient the states, because:

B i B i = −I , B i B i+2 = +I while B i B i+1 = B i B i-1 = random states, and likewise for M i.
See Figure 8 for a graphical summary of the states, where PAB = PA PB. It is easy to
understand that for three (or more) qubits, there are (q-1)2 = 4 equivalent Bell operators of the
form (SA ± SB ± SC) and the same number of out-of-phase sets of Bell states with exactly the
same properties discussed here. This concludes the discussion of ebits and the Bell and magic
states. The next topic is the new operators that are possible for two qubits.

i Exhaustively searched the 43 million cases for solutions X in Q 2 where (SA±SB)(X) = 1 and found none.
ii All B i and M i are singular because they respectively contain B and M as factors.

 D. Matzke, C. D. Cantrell, M. Manthey 19

Figure 8. Summary of Bell and Magic States

4.2. Conditional Operators CNOT and CSPIN

The only logic-like operator for one qubit is inversion due to phase spinning. The new
operators possible for two qubits are the so-called conditional operators (similar to the
familiar if-then-else clauses) because one qubit acts as a control qubit forming a conditional
gating state for the operator action on the other data qubit. Three or more qubits are required
before conventional logic operations can be performed using fully reversible logic gates such
as the Toffoli and Fredkin gates.

The conditional form of inversion is called the control-not operator (CNOT) and the
conditional spinor is called the control-spini operator (CSPIN). Both the CNOT and CSPIN
operators are expressed as multivector operators that are applied using the geometric product.
Conditional operators have the general behavior that if the state of a control qubit A is in state
A1 then the operation is performed on data qubit B. Alternately if qubit A is in state A0 then
the operation is not performed on qubit B. The CNOT operator performs a conditional
inversion of the data qubit, while leaving the control qubit unchanged.

Conditional operators are conceptually tricky with regard to quantum computing for the
following reasons. First, it is easy to assume, based on classical computing ideas, that in order
to “know” the state of the control qubit, it must be measured, which is problematic, if
measurement erases information. Second, therefore the conditionality must occur by applying
specific operators only to specific states. This is also problematic since the states are
thoroughly mixed via entanglement, and it is hard to separate out just the ones you want.
Third, geometric products of multivectors are unconditional since each n-vector element is
jointly affected by every n-vector in the operator. The results achieved so far for one qubit are
due to the natural unconditional behavior of geometric products, spinors, and destructive
interference.

An example of a conditional operator for one qubit is the reverseii operator, denoted as A� . As
the name suggests, this operator simply reverses the order of the vectors in an n-vector A, but

i Control-spin is usually called a control-Hadamard gate in the literature.
ii Reverse is identical to Hermitian adjoint

†A = A� used in matrices. If A = A� then A is self-adjoint

20 Quantum Computing Made Easy

this is not related to the concept of reversibility. If the vectors are then placed back in the
standard vector order, then dependent on the overall grade of the particular n-vector, the
coefficient will conditionally either remain the same or complement its orientation due to
anticommutative operand swaps. The reverse of a multivector is the reverse of each graded
element separately, where scalars and vectors are unaffected. Here are some examples.

reverse(±1) = ±1 and reverse(a) = a
reverse(a b) = b a = –a b

reverse(a b c) = c b a = –a b c
reverse(a b c d) = d c b a = +a b c d

reverse(a b c d e) = e d c b a = +a b c d e
reverse(a b c d e f) = f e d c b a = –a b c d e f (20)

Through use of the reverse operator and the operator A0 = (a0 – a1), a single qubit A can be
reversibly encoded into the even-grade plane to represent a complex number (A0 A0 = –1,
A1 A0 = +1, A– A0 = –SA, A+ A0 = SA). The operator equivalent to the requisite complex
conjugate can then be performed using the reverse operator to invert conditionally only the
sign of the imaginary (or bivector) portion. This result is then converted back into the
standard qubit states using the operator A1 = (–a0 +a1). This sequence of steps A’ =
reverse(A A0) A1 conditionally inverts only the superposition states A± and topologically
represents a reflection of the states off one of the axis, but cannot be realized by using only
the unconditional geometric product. The main point of this discussion is that in general,
writing conditional operators in a reversible linear representation is not straightforward and
requires specialized state preparation and operators (e.g. conjugation) other than geometric
products. In spite of this general restriction, it is possible to realize CNOT and CSPIN as
multivector operators.

The earlier point regarding knowing the state of the control qubit is the inspiration behind the
CNOT operator. As shown above for the complex number representation of a qubit, it is
possible to encode a qubit in the even-grade plane using the operator A0 = (a0 – a1). The
classical states A0/1 are mapped to ±1 respectively (an invariant) and the superposed states A±
are mapped to ±SA (a random value). So the result of using any state as its own operator is
like making a reversible encoding without breaking the symmetry of the qubit. This insight is
the key to understanding that the control-not operator for control qubit A is CNOTAB = A0.
Here are the results of entangling two qubits with the application of the CNOT operator.

A0 B CNOTAB = (+1) B = +B => leave data qubit

A1 B CNOTAB = (–1) B = –B => invert data qubit
A– B CNOTAB = (+SA) B = SA(+B) => leave data qubit

A+ B CNOTAB = (–SA) B = SA(–B) => invert data qubit (21)

As expected, the CNOT operator maps the control qubit to the other encoding, but the right
multiplication of the operator causes the sign to become inverted due to the non-commutative
operation B A0 = –A0 B. The overall effect is to invert B depending on the state of A. It is
useful to think that this reversible operator reassigns the information in qubit A to the sign of
qubit B (remember A0 B1 = A1 B0). So qubit A now contains the state +1, which means A was
classically encoded and +SA means A was encoded as a superposition. A control-not gate is
intended to be defined only for classical control states, so the result containing the spinor SA

 D. Matzke, C. D. Cantrell, M. Manthey 21

is correct. The same analysis derives the operator when the roles are swapped for the data and
control qubits. Another way to think of this is that A1 and B define a simultaneous constraint.
This result is not exactly the conventional definition of the control-not operator since the
encoding of the control qubit is modified. This can be remedied if another qubit A’ is
initialized to the same state A’= A, then the result is that the new qubit B includes a duplicate
of the entangled information from A, and the qubit A is left intact and untouched. The
duplicate must be created in parallel since copying or cloning a qubit requires a measurement.
This restriction is called the no-cloning theorem of quantum information.

A A’B CNOTA’B = A (∓ B) = ∓ A B (22)

Since (SA)2 = (spinor)2 = NOT the inspiration occurred to solve for (CSPIN)2 = CNOT, and

the result is CSPIN = CNOT = –1 + A0 (and its other root, and inverse of +1 + A1). This
operator has the same concurrent structure as the Pauli spin operator, except with the

concurrent operators being the inversion and reversible encoding. Since CSPIN = 4 1− it
indicates a 45 degree rotation. Interestingly, the Bell operators have this exact same structure

where (B)2 = −I , and B = (B)2 + B = −I + B and this structural similarity of equations
is most likely a meaningful coincidence. The results of the CSPIN operator in Eq. (23) and
Table 9 are interesting because they show the need for a mixed-grade multivector to encode
the phase information.

A0 B0 CSPINAB = B0 – A0 B0 = (b0 – b1) – a0 b0 + a0 b1 + a1 b0 – a1 b1
A– B0 CSPINAB = SA B0 + A+ B0 = a0 a1 (b0 – b1) + a0 b0 – a0 b1 + a1 b0 – a1 b1 (23)

For classical states of the control qubit A, Table 9 shows that the overall multivector
orientation inverts depending on the control qubit state. The superposition states are also
encoded, yet of the 16 possible rows only 6 rows are valid at once. The valid rows indicate
what the valid states are and represent a simultaneous constraint system where the operators
conditionally change the overall row states that are non-zero. This is clearly evident by the
conditional validity of row-states R5, R6, R9 and R10 in Table 9.

Table 9. Valid rows for A B CSPINAB

Combinations A B CSPINAB = –A B + B0/1 Rowk a0 a1 b0 b1

Active
States A0B(A0–1) A1B(A0–1) A0B(A0+1) A1B(A0+1)

R1 – – – + A– &B1 + – + –
R2 – – + – A– &B0 – + – +
R5 – + – + A1 &B1 0 0 – +
R6 – + + – A1 &B0 0 0 +

= b0
–

= b1

R9 + – – + A0 &B1 – + 0 0
R10 + – + – A0 &B0 +

= b0
–

= b1
0 0

R13 + + – + A+ &B1 + – + –
R14 + + + – A+ &B0 – + – +

This concludes the new operators for Q2.

22 Quantum Computing Made Easy

5. Toffoli Operator is Concurrent CNOT

The same process for the control-not gate can be expanded to Q3 in order to include two
control qubits A, B and a data qubit D. The resulting control-control-not gate is called the
Toffoli operator and only inverts qubit D when the control qubits are both active (denoted by
the subscript 1) in states A1 and B1. The individual cases of single control-nots are first
expressed to correctly account for the anticommutative operand swaps. The control qubits are
indicated by the small subscript c, since it is not always the first one listed in an expression.

A Bc D CNOTBD = A Bc D (B0) = A Bc B1 D = ± A D (one operand swap)
Ac B D CNOTAD = Ac B D (A1) = Ac A1 B D = ± B D (two operand swaps)

Now the Toffoli Operator is TOFABD = CNOTAD + CNOTBD = A1+B0 = (–a0 + a1 + b0 – b1)
and is reversible because (TOF)2 = +1. This simple grade-1 multivector operator and grade-2
multivector outcome is a direct result of applying the concurrency interpretation of addition
as discovered for the Bell operator. Here is the general Toffoli gate formula:

Ac Bc D (TOFABD) = Ac Bc D (A1 + B0) = ± B D ± A D (24)

An particular case of Eq. (24) is now required in order to compute the valid rows in Table 10:

A0 B0 D0 (TOFABD) = + a0 d0 – a0 d1 – a1 d0 + a1 d1 + b0 d0 – b0 d1 – b1 d0 + b1 d1
= [00000+–0 0–+00000 0+–00–+0 00000+–0 0–+00000 0+–00–+0 00000+–0 0–+00000] (25)

Table 10. Valid row states for A0 B0 D0 (TOFABD) in Q 3

State Combinations Rowk a0 a1 b0 b1 d0 d1
Active
States

A0 B0 D0 (TOFABD)

R21 – + – + – + A1 B1 & D1 –
R22 – + – + + – A1 B1 & D0 +

Inverted

R41 + – + – – + A0 B0 & D1 +
R42 + – + – + – A0 B0 & D0 –

Identity

8 rows Aclassical Bsuperpose Dclassical Ac Bs & Dc ±
8 rows Asuperpose Bclassical Dclassical As Bc & Dc ±

Mixed states

44 rows All conditions not listed above none 0 Invalid

Rows 21-22 in Table 10 represent the valid states where both control lines are active high and
the output orientation is inverted compared to qubit D. Rows 41-42 represent the valid states
when no inversion occurs, so the output orientation matches qubit D. Since the Toffoli gate
TOFABD = (–a0 + a1 + b0 – b1), it is clear why three qubits in Q3 are necessary to express this
operator. There are four variants of this operator, A0+B0, A1+B0, A1+B0, and A1+B1, depending
on the desired Boolean condition.

Notice that no other row states are valid when both controls have classical states! This is
important because, due to the overall symmetry in geometric algebra, designing arbitrary
multiplicative operators is difficult, so in essence operators are discovered, not designed.
This problem is akin to building a ship in a bottle, where the quantum state is analogous to a
very high-dimensional bottle and only tools (or operators) that fit through the neck of the
bottle (combinations of single qubit operators) are allowed. It is possible to design an

 D. Matzke, C. D. Cantrell, M. Manthey 23

arbitrary state because the row states are linearly independent (given any vector notation can
uniquely convert to the algebraic notation and vice versa). Some states can only be created via
addition rather than with a multiplicative operator starting from a valid entangled qubit state.

6. Conclusions

The wealth of quantum computing concepts described here, using only addition and
geometric products, is possible because geometric algebra naturally and implicitly captures
the topological informational distinctions and constraints needed to represent qubits, ebits and
familiar operators. This is the only possible interpretation of the co-occurrence of two vectors.
Due to the power of geometric algebra to represent classical mechanics, gravitational
contraction and quantum mechanics, it is called “a unified language for physics and
engineering” [5]. This work extends that domain to include quantum information and
quantum computation with straightforward, well-developed [4] and – most importantly –
easily interpreted mathematics. This work presents a qubit algebra and as well demonstrates a
linearly independent, dual, vector notation that is useful because it combines the topologically
smallest elements in the algebra.

It is interesting to see how unfamiliar but transparently meaningful algebraic rules emerge
directly from the choice of symmetric binary values +1 and –1 and the mapping of co-
occurrence and co-exclusion to addition and the geometric product, i.e. a b = –b a and a a =
1. This symmetry then impacts the symmetry of the addition and multiplication operators, i.e.
1/a = a, 2a = a + a = –a = a/2 and enables sparse invariants. This symmetry is reinforced
because qubits are the sum of two vectors, which results in many counts being a power of 2.
As a result, the additive and multiplicative inverses become interchangeable as A0= –A1= 1/A1,
but also sequential and concurrency ideas herewith intersect, e.g. Rk Rk = Rk + Rk = Pk. One
should remember that the mathematics describing quantum mechanics is algebraically closed,
and so is equivalent to bouncing a light beam around inside a hollow mirrored sphere.

Quantum computing works because it relies on the intrinsically high-dimensional
infrastructure of the quantum universe. John Wheeler’s paper “It from Bit” [13] stipulates that
everything classical, including energy, matter, spacetime and even empty space, emerges
from this bit soup (also called quantum ether or quantum foam) because the universe started
as a “bit bang” [6,12]. Our geometric algebra approach algebraically and consistently
describes topological quantum information forms as a massless high-dimensional topology
and true concurrency without focusing on how it is projected into any of the classical
properties of space, time or energy. This approach is consistent with extant quantum gravity
theories treating the information mechanics of black holes (or bit buckets) [14].

It is possible to make better decisions, to be smarter, with high-dimensional spaces [15]
because more states can participate simultaneously in a decision, due to a higher locality
metric and true concurrency. Quantum metrics and phenomena are not possible in
computation restricted to classical spacetime. Spacetime itself limits the computational
density by segregating [16] the required information locality and concurrency. This alone
should motivate engineers and programmers to want to understand quantum computing:
because it allows computers to cheat by computing outside the limiting spacetime box that
occurs when representing bits classically. Because of the unusual and counterintuitive nature
of quantum information, encouraging engineers and programmers to ascend the quantum
computing learning curve will lead to an appreciation of the fundamental role of information
in the quantum computing universe and might lead to general purpose quantum computers.

24 Quantum Computing Made Easy

Acknowledgements

Special thanks go to my UTD Ph.D. committee chairmen and members. Also, I would like to
thank Katrina Riehl, who helped outline the sequence of quantum computing concepts that
would be useful (and also avoided) for a novice computer professional.

References

1. P. Shor (1994), “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”, In

Proceedings of 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, page 124.

2. F. Mattern (1999), “Quantum Computing Introduction”, Paper found on his website
http://www.rommel.stw.uni-erlangen.de/~frank/informatik/QuantumComputing.pdf.

3. D. Hestenes (1999), New Foundations for Classical Mechanics (Second Edition), Kluwer Academic
Press.

4. D. Matzke (May 2002), “Quantum Computation using Geometric Algebra”, University of Texas at
Dallas, Ph.D. dissertation in the Department of Electrical Engineering. See http://www.photec.org.

5. J. Lasenby, A.N. Lasenby and C.J.L. Doran (2000), “A unified mathematical language for physics
and engineering in the 21st century”, Phil. Trans. R. Soc. Lond, A 358, pp. 21-39.

6. M. Manthey (Sept 1998), "A Combinatorial Bit Bang Leading to Quaternions". See paper number
9809033 on LANL Eprints server at http://eprints.lanl.gov.

7. R. Landauer (1991), “Information is Physical”, Physics Today, Vol. 44, pp. 23-29.
8. C. Bennett (1973), “Logical Reversibility of Computation”, IBM Journal of Research and

Development. Vol. 17, pp. 525-532.
9. C. D. Cantrell (2000), Modern Mathematical Methods for Physicists and Engineers, Cambridge

University Press.
10. C. J. L. Doran, (2000) Handouts for course “Physical Applications of Geometric Algebra”, See

http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/, Handout for lecture 4 on Geometric Algebra and
Quantum Mechanics, Section 2 on “Spinors and Multivectors”.

11. J. Bell (1964), “On the Einstein-Podolsky-Rosen Paradox”, Physics, Vol. 1, pp. 195-200.
12. D. Matzke (1996), “Information is Protophysical”, Proceedings of the Workshop on Physics and

Computation, PhysComp96, New England Complex System Institute.
13. J. Wheeler (1989), “It From Bit”, Proceedings of the 3rd International Symposium on Foundations

of Quantum Mechanics, Tokyo.
14. M. Schiffer (1993), “The interplay between Gravitation and Information Theory”, Proc. of the

Workshop on Physics and Computation, PhysComp92, IEEE Computer Society Press.
15. P. Kanerva (1988), Sparse Distributed Memory, MIT Press.
16. D Matzke (September 1997), “Will Physical Scalability Sabotage Performance Gains?”, Computer

Magazine, Vol. 30, No. 9, pp 37-39.

