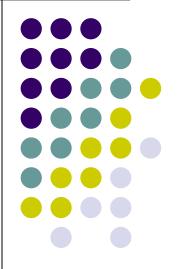
The Shifting Paradigm of Quantum Computing

Presented at the Nov 2005

Annual Dallas Mensa Gathering

By Douglas Matzke, Ph.D.

doug@QuantumDoug.com http://www.QuantumDoug.com



Abstract

Quantum computing has shown to efficiently solve problems that classical computers are unable to solve. Quantum computers represent information using phase states in high dimensional spaces, which produces the two fundamental quantum properties of superposition and entanglement.

This talk introduces these concepts in plain-speak and discusses how this leads to a paradigm shift of thinking "outside the classical computing box".

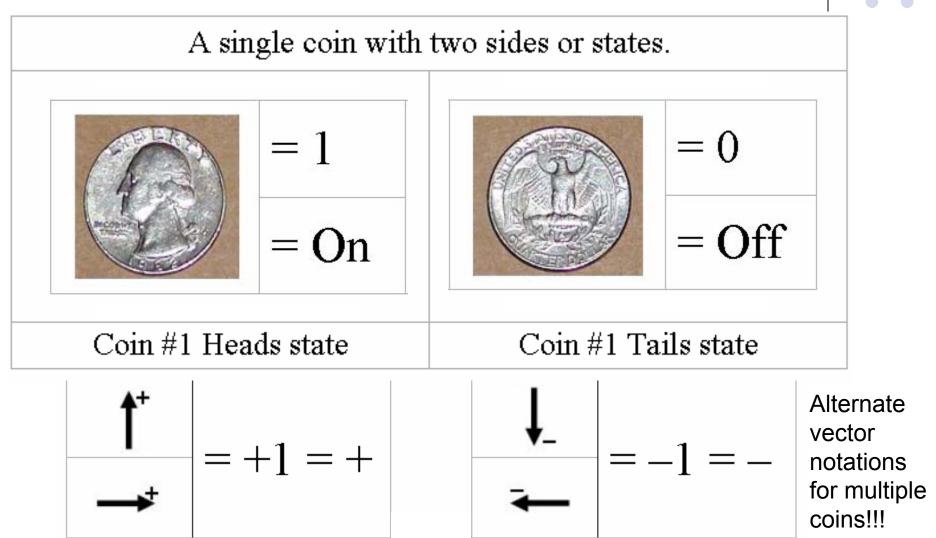
Biography

Doug Matzke has been researching the limits of computing for over twenty years. These interests led him to investigating the area of quantum computing and earning a Ph.D. in May 2001. In his thirty year career, he has hosted two workshops on physics and computation (PhysComp92 and (PhysComp94), he has contributed to 15 patent disclosures and over thirty papers/talks (see his papers on QuantumDoug.com). He is an enthusiastic and thought provoking speaker.

Outline

- Classical Bits
 - Distinguishability, Mutual Exclusion, co-occurrence, co-exclusion
 - Reversibility and unitary operators
- Quantum Bits Qubits
 - Orthogonal Phase States
 - Superposition
 - Measurement and singular operators
 - Noise Pauli Spin Matrices
- Quantum Registers
 - Entanglement and coherence
- Entangled Bits Ebits
 - Bell and Magic States
 - Bell Operator
- Quantum Algorithms
 - Shor's algorithm
 - Grover's Algorithm
- Quantum Communication
 - Quantum Cryptography
- Summary

Classical Bits



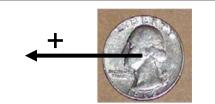
Classical Information

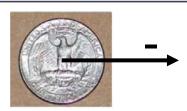
Distinguishability

- **Definition:** Individual items are identifiable
 - Coins, photons, electrons etc are not distinguishable
 - Groups of objects described using statistics

Mutual Exclusion (mutex)

- **Definition:** Some state excludes another state
 - Coin lands on heads or tails but not both
 - Faces point in opposite directions in vector notation





Coin Demonstration: Act I

Person stands with both hands behind back

Act I part A:

Person shows hand containing a coin then hides it again

Act I part B:

Person again shows a coin (indistinguishable from 1st)

Act I part C:

Person asks: "How many coins do I have?"

Represents one bit: either has 1 coin or has >1 coin

Act II:

Person holds out hand showing two identical coins

Received one bit since ambiguity resolved!

Act III:

Asks: "Where did the bit of information come from?"

Answer: Simultaneous presence of the 2 coins!

DJM Nov 25, 2005 Related to simultaneity and synchronization!

Space and Time Ideas

Abstract Space

Co-occurrence means states
 exist *exactly* simultaneously:
 Spatial prim. with addition operator

 Co-exclusion means a change
 occurred due to an operator: Temporal with multiply operator

Abstract Time

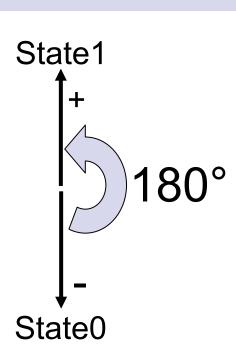
* see definitions in my dissertation but originated with Manthey

<mark>a + b</mark> = <mark>b</mark> + <mark>a</mark>

c - d + d - c = 0

(or cannot occur)

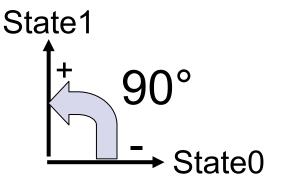
Quantum Bits – Qubits



Classical bit states:

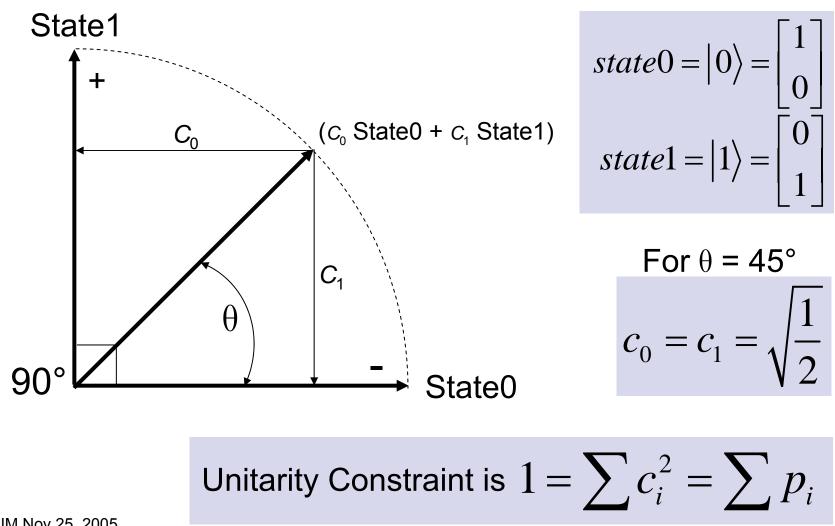
Mutual Exclusive

Quantum bit states: Orthogonal



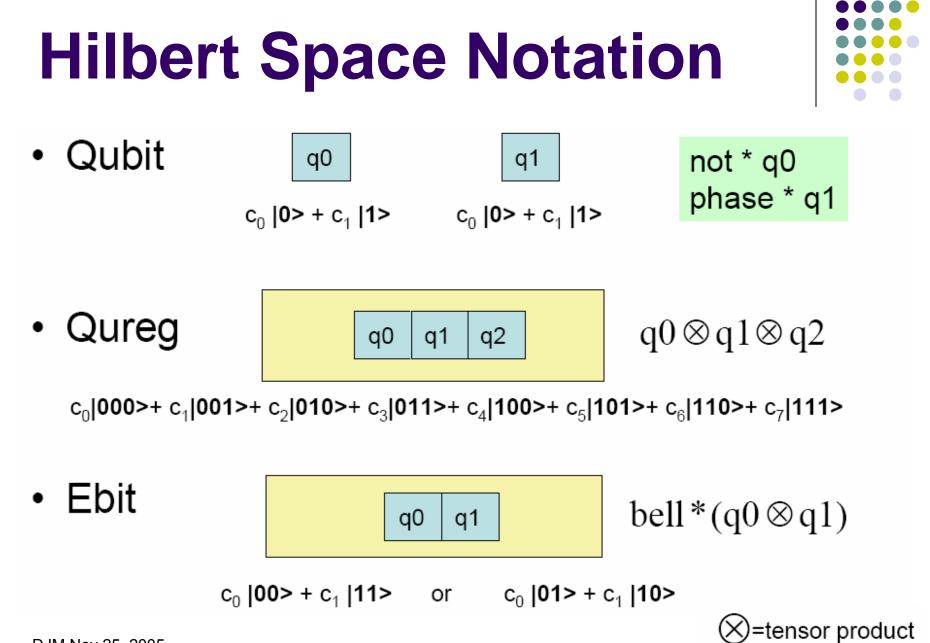
Qubits states are called spin ½

Phases & Superposition



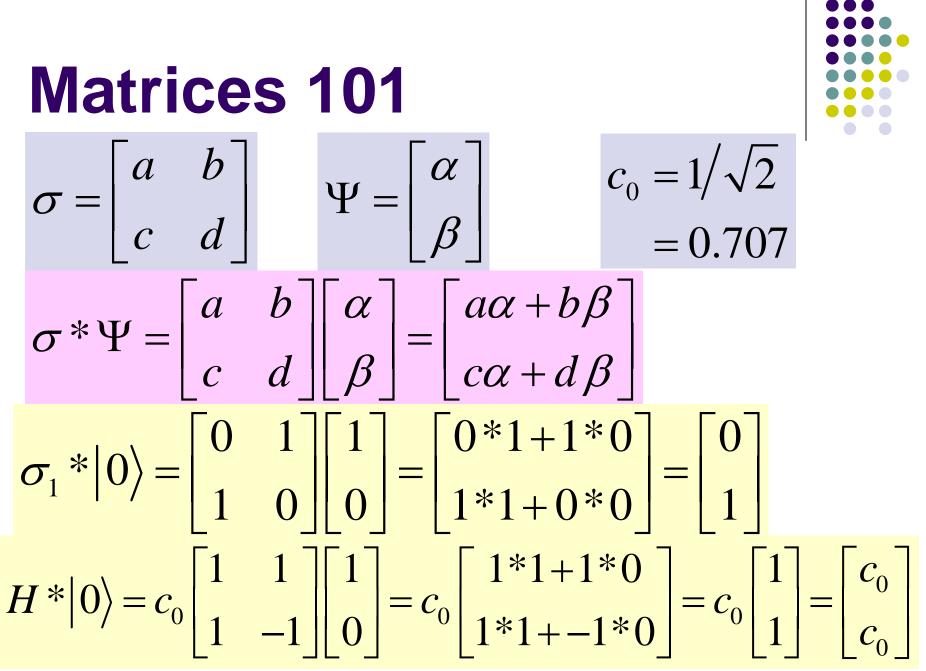
Classical vs. Quantum

Торіс	Classical	Quantum
Bits	Binary values 0/1	Qubits $c_0 0\rangle + c_1 1\rangle$
States	Mutually exclusive	Linearly independ.
Operators	Nand/Nor gates	Matrix Multiply
Reversibility	Toffoli/Fredkin gate	Qubits are unitary
Measurement	Deterministic	Probabilistic
Superposition	Code division mlpx	Mixtures of $ 0 angle$ & $ 1 angle$
Entanglement	none	Ebits $c_0 00\rangle + c_1 11\rangle$



Unitary Qubit Operators

Gate	Symbolic	Matrix	Circuit	Exists
Identity	$\sigma_{_{0}}*\psi$	$\sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	Ψ	$1/\sigma_{_0}$
Not (Pauli-X)	$\sigma_{_1}^{*}\psi$	$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	<i>₩</i> –x–	$1/\sigma_1$
Shift (Pauli-Z)	$\sigma_{_{3}}*\psi$	$\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	ψz	$1/\sigma_3$
Rotate	$\theta^*\psi$	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$	Ψ-Θ-	1/0
Hadamard - Superposition	$H^*\psi$	$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$	Ψ-H-	1/ <i>H</i>
DJM Nov 25, 2005		$\begin{bmatrix} 0\rangle & 1\rangle \end{bmatrix}$		



$$\sqrt{Not} \text{ and Trine States}$$

$$|1\rangle \qquad \qquad Not^{2} = \theta_{90}^{2} = -1$$

$$Not^{2} = \sqrt{-1} = i$$

$$Not = \sqrt{-1} = i$$

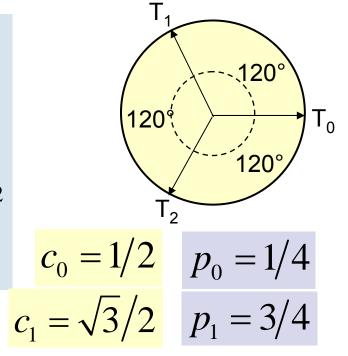
$$\sqrt{Not} = \theta_{45} = \sqrt{i}$$

$$Tr^{3} = \theta_{120}^{3} = 1$$

$$Tr |0\rangle \rightarrow c_{0} |0\rangle + c_{1} |1\rangle = T_{1}$$

$$Tr (c_{0} |0\rangle + c_{1} |1\rangle) = c_{0} |0\rangle - c_{1} |1\rangle = T_{2}$$

$$Tr (c_{0} |0\rangle - c_{1} |1\rangle) = |0\rangle = T_{0}$$



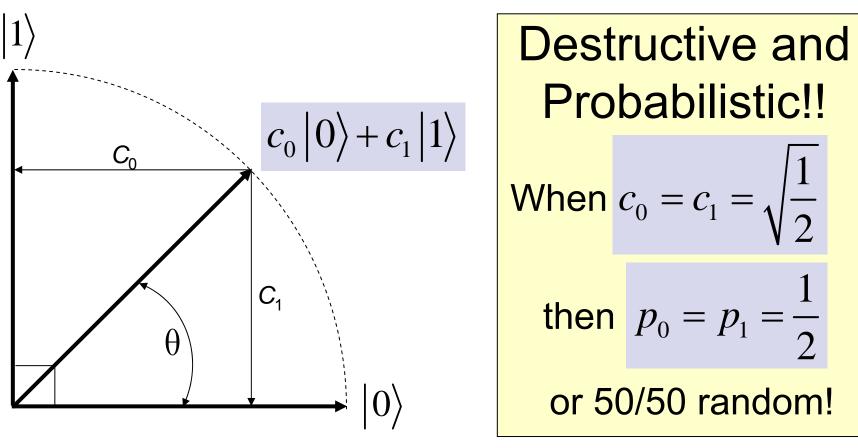
Quantum Noise

• Pauli Spin Matrices

Label	Symbolic	Matrix	Description
Identity	$\sigma_{_{0}}*\psi$	$\sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1$	$\sigma_{_{0}} 0 angle ightarrow 0 angle$
Bit Flip	$\sigma_{_1}*\psi$	$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$egin{array}{c c c c c c c c c c c c c c c c c c c $
Phase Flip	$\sigma_{_{3}}*\psi$	$\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$\sigma_{3} 1\rangle \!\rightarrow\! - 1\rangle$
Both Flips	$\sigma_{_2}*\psi$	$\sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$ \begin{array}{c c} \sigma_2 0\rangle \rightarrow i 1\rangle \\ \sigma_2 1\rangle \rightarrow -i 0\rangle \end{array} $

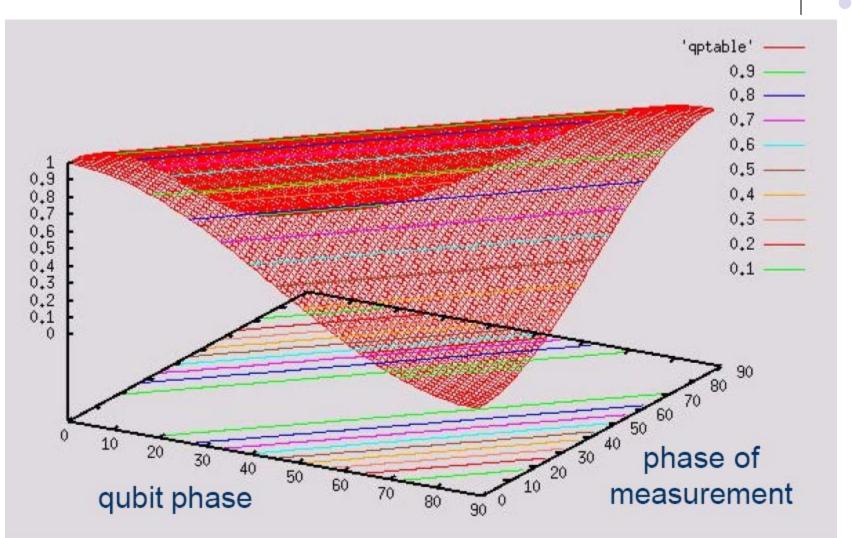
Quantum Measurement

Probability of state $c_i |i\rangle$ is $p_i = c_i^2$ and $p_1 = 1 - p_0$



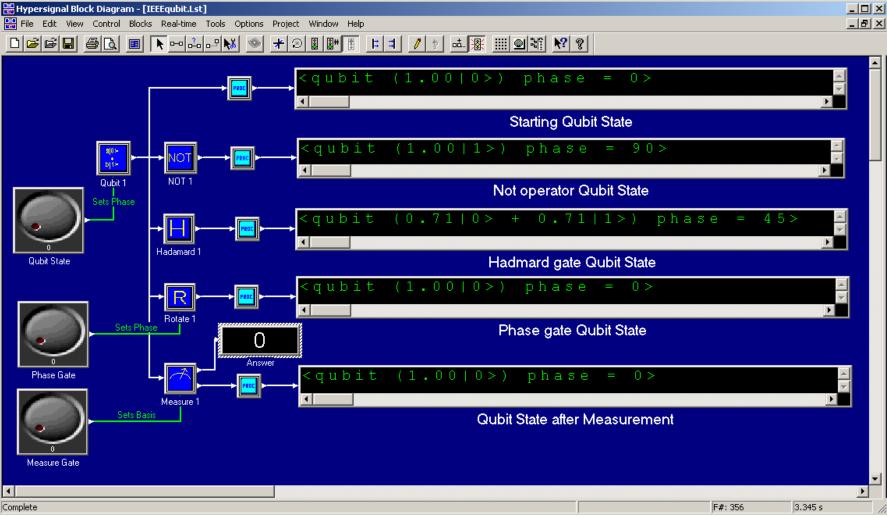
Concepts of projection and singular operators

Quantum Measurement



Qubit Modeling

Qubit Operators: not, Hadamard, rotate & measure gates



DJM Nov 25, 2005

Our library in Block Diagram tool by Hyperception

Quantum Registers

Entanglement

- Tensor Product \otimes is mathematical operator
- Creates 2^q orthogonal dimensions from q qubits: $q_0 \otimes q_1 \otimes \dots$
- Unitarity constraint for entire qureg
- Separable states
 - Can be created by tensor product
 - Maintained by "coherence" and no noise.
- Inseparable states
 - Can't be directly created by tensor product
 - Concept of Ebit (pieces act as whole)
 - EPR and Bell/Magic states (spooky action at distance)
 - Non-locality/a-temporal quantum phenomena proven as valid

Qureg Dimensions

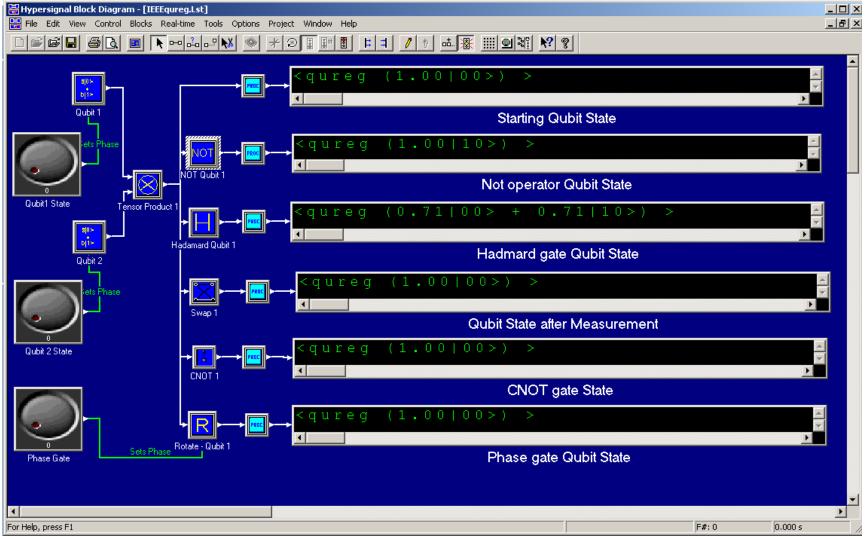
$$state 0_{0} = |0\rangle = \begin{bmatrix} 1\\0\\0\\1\end{bmatrix} q_{0} \qquad state 0 = |00\rangle = \begin{bmatrix} 1\\0\\0\\0\\0\end{bmatrix} \qquad state 1 = |01\rangle = \begin{bmatrix} 0\\1\\0\\0\\0\end{bmatrix}$$
$$\bigotimes = q_{0} \otimes q_{1} \qquad q_{0} \otimes q_{1} \qquad state 1 = |01\rangle = \begin{bmatrix} 0\\1\\0\\0\\0\end{bmatrix}$$
$$state 0_{1} = |0\rangle = \begin{bmatrix} 1\\0\\0\\1\\0\end{bmatrix} \qquad state 2 = |10\rangle = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix} \qquad state 3 = |11\rangle = \begin{bmatrix} 0\\0\\0\\1\\0\end{bmatrix}$$

Special kind of linear transformations

Unitary QuReg Operators

Gate	Symbolic	Matrix	Circuit	
cnot = XOR Control-not	cnot * ψ	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	$\stackrel{\psi}{\Phi} \stackrel{\bullet}{\longrightarrow}$	
cnot2	cnot2*ψ	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	$\psi \rightarrow \Phi \rightarrow \Phi$	
swap = cnot*cnot2*cnot	swap*¥	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\psi - \phi = \phi$	— * — *
DJM Nov 25, 2005		$\begin{bmatrix} 00 \\ 01 \\ 01 \\ 10 \\ 11 \\ 11 \\ 11 \\ 11 $		

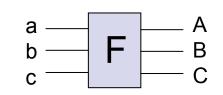
Quantum Register Modeling

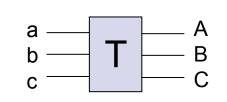


DJM Nov 25, 2005 Qureg Operators: tensor product, CNOT, SWAP & qu-ops

Reversible Computing

3 in & 3 out





c	b	а	С	В	Α
0	0	0	0	0	0
0	<mark>0</mark>	<mark>1</mark>	0	<mark>1</mark>	<mark>0</mark>
0	<mark>1</mark>	<mark>0</mark>	0	<mark>0</mark>	<mark>1</mark>
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	1	1	1
H	Fredkin Gate c=control				

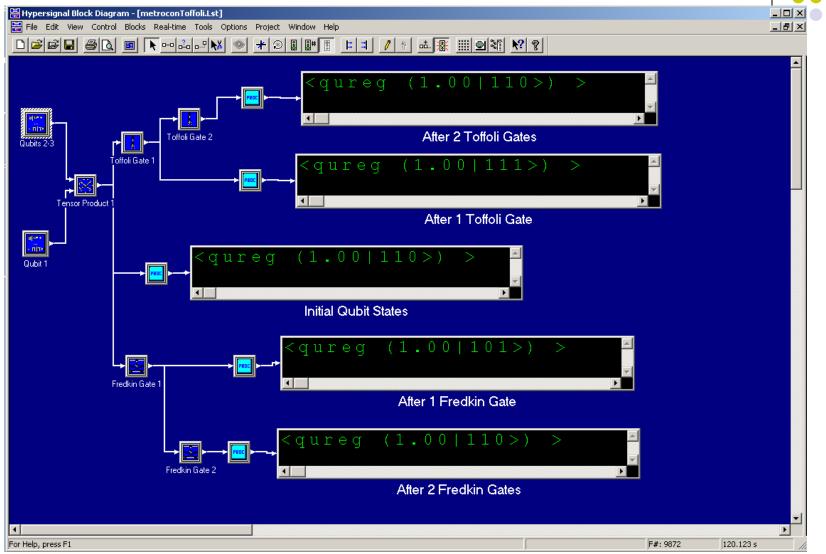
c	b	а	С	В	Α
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	<mark>0</mark>	1	1	<mark>1</mark>
1	1	<mark>1</mark>	1	1	<mark>0</mark>
Т	Toffoli Gate c=b=control				

2 gates back-to-back gives unity gate: T*T = 1 and F*F = 1

Reversible Quantum Circuits

Gate	Symbolic	Matrix	Circuit
Toffoli = control-control-not	$T*\psi$	$\begin{bmatrix} 1 & & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & 1 & & \\ & & & &$	$ \begin{array}{c} \psi_1 \\ \psi_2 \\ \psi_2 \\ \psi_3 \\ \hline \end{array} $
Fredkin= control-swap	$F*\psi$	$\begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & & \\ & & & 0 & 1 & \\ 0 & & & 1 & 0 & \\ & & & & & 1 \end{bmatrix}$	$\begin{array}{c} \psi_1 \\ \psi_2 \\ \psi_2 \\ \psi_3 \\ \end{array}$
Deutsch	$D^*\psi$	$\begin{bmatrix} 1 & & & & \\ 1 & & 0 & \\ & 1 & & \\ & & 1 & & \\ & & & 1 & \\ & & & 1 & \\ 0 & & & i\cos\theta & \sin\theta \\ & & & & \sin i\cos\theta \end{bmatrix}$	ψ_1 ψ_2 ψ_3 ψ_3
DJM Nov 25, 2005		$ 010\rangle$ $ 011\rangle$ $ 100\rangle$	$\rangle 101\rangle 110\rangle 111\rangle$

Toffoli and Fredkin Gates



DJM Nov 25, 2005

Ebits – Entangled Bits

- EPR (Einstein, Podolsky, Rosen) operator
- $\boldsymbol{B} = \begin{bmatrix} c_{0} & 0 & 0 & c_{0} \\ 0 & c_{0} & c_{0} & 0 \\ c_{0} & 0 & 0 & -c_{0} \\ 0 & c_{0} & -c_{0} & 0 \end{bmatrix}$ $\boldsymbol{B}_{0} = \Phi^{+} = c_{0} \left(|00\rangle + |11\rangle \right), \quad \boldsymbol{B}_{1} = \Phi^{-} = c_{0} \left(|00\rangle - |11\rangle \right)$ $\boldsymbol{B}_{2} = \Psi^{+} = c_{0} \left(|01\rangle + |10\rangle \right), \quad \boldsymbol{B}_{3} = \Psi^{-} = c_{0} \left(|01\rangle - |10\rangle \right)$ • Magic States

$$M_{0} = c_{0} (|00\rangle + |11\rangle), \quad M_{1} = c_{1} (|00\rangle - |11\rangle) \quad c_{0} = 1/\sqrt{2}$$
$$M_{2} = c_{1} (|01\rangle + |10\rangle), \quad M_{3} = c_{0} (|01\rangle - |10\rangle) \quad c_{1} = i/\sqrt{2}$$

EPR: Non-local connection

- Step1: Two qubits \sim $|0_0\rangle, |0_1\rangle$ • Step2: Entangle \rightarrow Ebit \sim $\Psi^{\pm} = |00\rangle \pm |11\rangle$ $\Psi^{\pm} = |01\rangle \pm |10\rangle$ • Step3: Separate \sim $|?\rangle, |?\rangle$
- Step4: Measure a qubit
 - Other is same if Φ^{\pm}
 - Other is opposite if $\,\Psi^{\pm}\,$

$$answer = 1, other = 1$$

$$answer = 1, other = 0$$

Linked coins analogy

Quantum Algorithms

- Speedup over classical algorithms
 - Complexity Class: Quantum Polynomial Time
 - Reversible logic gates just mimics classical logic
- Requires quantum computer with q>100 qubits
 - Largest quantum computer to date has 7 qubits
 - Problems with decoherence and scalability
- Known Quantum Algorithms
 - Shor's Algorithm prime factors using QFT
 - Grover's Algorithm Search that scales as sqrt(N)
 - No other algorithms found to date after much research

Quantum Communication

- Quantum Encryption
 - Uses fact that measuring qubit destroys state
 - Can be setup to detect intrusion
- Quantum Key Distribution
 - Uses quantum encryption to distribute fresh keys
 - Can be setup to detect intrusion
- Fastest growing quantum product area
 - Many companies and products
 - In enclosed fiber networks and also open air

Quantum Mind?

- Did biology to tap into Quantum Computing?
 - Survival value using fast search
 - We might be extinct if not for quantum mind
- Research with random phase ensembles
 - Ensemble states survive random measurements
 - See paper "Math over Mind and Matter"
- Relationship to quantum and consciousness?
 - Movie: "What the Bleep do we know anyhow?
 - Conferences and books

Summary and Conclusions

- Quantum concepts extend classical ways of thinking
 - High dimensional spaces and simultaneity
 - Distinguishability, mutual exclusion, co-occurrence and co-exclusion
 - Reversible computing and unitary transforms
 - Qubits superposition, phase states, probabilities & unitarity constraint
 - Measurement and singular operators
 - Entanglement, coherence and noise
 - Ebits, EPR, Non-locality and Bell/Magic States
 - Quantum speedup for algorithms
 - Quantum ensembles have most properties of qubits
- Quantum systems are ubiquitous
 - Quantum computing may also be ubiquitous
 - Biology may have tapped into quantum ensemble computing
 - Quantum computing and consciousness may be related