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Abstract
Quantum computing has shown to efficiently solve 
problems that classical computers are unable to 
solve. Quantum computers represent information 
using phase states in high dimensional spaces, 
which produces the two fundamental quantum 
properties of superposition and entanglement.

This talk introduces these concepts in plain-speak 
and discusses how this leads to a paradigm shift 
of thinking "outside the classical computing box". 
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Classical Bits

Alternate 
vector 
notations 
for multiple 
coins!!!
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Classical Information
Distinguishability

Definition: Individual items are identifiable
Coins, photons, electrons etc are not distinguishable
Groups of objects described using statistics

Mutual Exclusion (mutex)
Definition: Some state excludes another state

Coin lands on heads or tails but not both
Faces point in opposite directions in vector notation

+ -
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Coin Demonstration: Act I
Setup:

Person stands with both hands behind back

Act I part A:
Person shows hand containing a coin then hides it again

Act I part B:
Person again shows a coin (indistinguishable from 1st)

Act I part C: 
Person asks: “How many coins do I have?”

Represents one bit: either has 1 coin or has >1 coin
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Coin Demonstration (cont)
Act II:

Person holds out hand showing two identical coins

Received one bit since ambiguity resolved!

Act III:
Asks: “Where did the bit of information come from?”

Answer: Simultaneous presence of the 2 coins!
Related to simultaneity and synchronization!
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Space and Time Ideas

Co-occurrence means states      
exist exactly simultaneously:   
Spatial prim. with addition operator

Co-exclusion means a change 
occurred due to an operator:   
Temporal with multiply operator

* see definitions in my dissertation but originated with Manthey
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Quantum Bits – Qubits

+

-

-

+

Classical bit states: 
Mutual Exclusive

Quantum bit states: 
Orthogonal

180°
90°

Qubits states are 
called spin ½ 

State1

State0

State1

State0
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Phases & Superposition
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Classical vs. Quantum
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Hilbert Space Notation
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Unitary Qubit Operators
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Matrices 101
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c d
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and Trine States
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Quantum Noise
Pauli Spin Matrices
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Quantum Measurement

0 1
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or 50/50 random!

Destructive and 
Probabilistic!!

Concepts of projection and singular operators
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Quantum Measurement
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Qubit Modeling
Qubit Operators: not, Hadamard, rotate & measure gates

Our library in Block Diagram tool by Hyperception
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Quantum Registers
Entanglement

Tensor Product ⊗ is mathematical operator
Creates 2q orthogonal dimensions from q qubits: q0 ⊗ q1 ⊗ … 
Unitarity constraint for entire qureg

Separable states
Can be created by tensor product 
Maintained by “coherence” and no noise.

Inseparable states
Can’t be directly created by tensor product
Concept of Ebit (pieces act as whole)
EPR and Bell/Magic states (spooky action at distance)
Non-locality/a-temporal quantum phenomena proven as valid
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Qureg Dimensions
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Unitary QuReg Operators
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Quantum Register Modeling

Qureg Operators: tensor product, CNOT, SWAP & qu-ops
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Reversible Computing
A
B
C

a
b
c

A
B
C

a
b
c

F T

2 gates back-to-back gives unity gate: T*T = 1 and F*F = 1

3 in & 3 out
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Reversible Quantum Circuits
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Toffoli and Fredkin Gates
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Ebits – Entangled Bits
EPR (Einstein, Podolsky, Rosen) operator

Bell States

Magic States
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Step1: Two qubits

Step2: Entangle Ebit

Step3: Separate

Step4: Measure a qubit
Other is same if 
Other is opposite if

EPR: Non-local connection

≈
0 10 , 0

00 11

01 10

±

±

Φ = ±

Ψ = ±

? , ?

1, 1
1, 0

answ er other
answ er other

= =
= =

±Φ
±Ψ

Linked coins analogy

~ ~

~ ~



DJM Nov 25, 2005

Quantum Algorithms
Speedup over classical algorithms

Complexity Class: Quantum Polynomial Time
Reversible logic gates just mimics classical logic

Requires quantum computer with q>100 qubits
Largest quantum computer to date has 7 qubits
Problems with decoherence and scalability

Known Quantum Algorithms
Shor’s Algorithm – prime factors using QFT
Grover’s Algorithm – Search that scales as sqrt(N)
No other algorithms found to date after much research
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Quantum Communication
Quantum Encryption

Uses fact that measuring qubit destroys state
Can be setup to detect intrusion

Quantum Key Distribution
Uses quantum encryption to distribute fresh keys
Can be setup to detect intrusion

Fastest growing quantum product area
Many companies and products
In enclosed fiber networks and also open air
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Quantum Mind?
Did biology to tap into Quantum Computing?

Survival value using fast search
We might be extinct if not for quantum mind

Research with random phase ensembles
Ensemble states survive random measurements
See paper “Math over Mind and Matter”

Relationship to quantum and consciousness?
Movie: “What the Bleep do we know anyhow?
Conferences and books
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Summary and Conclusions
Quantum concepts extend classical ways of thinking

High dimensional spaces and simultaneity
Distinguishability, mutual exclusion, co-occurrence and co-exclusion
Reversible computing and unitary transforms
Qubits superposition, phase states, probabilities & unitarity constraint
Measurement and singular operators
Entanglement, coherence and noise
Ebits, EPR, Non-locality and Bell/Magic States
Quantum speedup for algorithms
Quantum ensembles have most properties of qubits

Quantum systems are ubiquitous 
Quantum computing may also be ubiquitous
Biology may have tapped into quantum ensemble computing
Quantum computing and consciousness may be related


